0707070707007/

IOActive

COMPREHENSIVE COMPUTER SECURITY SERVICES

IOActive Security Advisory

Title AppleTalk Response Packet Parsing Array Over-indexing Vulnerability

Severity High to Critical

Date Discovered 03.03.09

Date Reported 03.03.09
Date Disclosed 08.05.09
CVE-ID CVE-2009-2193
Author llja van Sprundel

Affected Products

Mac OSX 10.5.x up through 10.5.7 in xnu-1228.12.14 (earlier versions also are likely to be
vulnerable).

Description
The Mac OS X AppleTalk stack contains an array over indexing vulnerability that, if
exploited correctly while AppleTalk is powered on, could lead to a remote system
compromise. Even if only partially exploited, it could lead to denial of service and cause a
kernel panic remotely, effectively shutting down the system.

Description
The vulnerability exists in the atp_rput() function, which is accessed by way through a
couple of other functions. The AppleTalk network entry point is at_input_packet(), which
is registered dynamically in atalk_load() with a call to proto_register_input(). It then
passes from at_input_packet() to ddp_input(), which calls atp_input(), a function
that calls atp_rput(). All the Mac OSX AppleTalk code resides in the xnu package's
bsd/netat/ directory:

drv_dep.c

static void

at_input_packet(
__unused protocol_family t protocol,
mbuf_t m)

Ilc_header_t *llc_header;

enet_header_t *enet_header;

if (lappletalk_inited) {
m_freem(m) ;

http://www.ioactive.com Page 1

0707070707007/

IOActive

COMPREHENSIVE COMPUTER SECURITY SERVICES

return;

enet_header = mtod(m, enet _header_t *);
llc_header = (llc_header_t *)(enet_header+1);

else if (LLC_PROTO_EQUAL(IIc_header->protocol,
snap_proto_ddp)) {

MCHTYPE(m, MSG_DATA); /* set the mbuf type */

ddp_input(m, iFfID);

ddp.c

void ddp_input(mp, ifID)
register gbuf t *mp;
register at _ifaddr_t *ifID;

{
register at ddp_t *ddp; /* DDP header */
ddp = (at_ddp_t *)gbuf _rptr(mp);
ifT (ddp->type == DDP_ATP) {
éié_input(mp);
goto out; /* return; */
}
}

atp_open.c

int atp_input(mp)
gbuf_t *mp;

{

atp_rput(gref, mp);

atp _read.c

void atp_rput(gref, m)
gref t *gref;

gbuf t *m;

{

register at _atp t *athp;

switch(gbuf _type(m)) {
case MSG_DATA:

http://www.ioactive.com Page 2

0707070707007/

IOActive

COMPREHENSIVE COMPUTER SECURITY SERVICES

athp = AT_ATP_HDR(m);

switch (athp->cmd) {
case ATP_CMD_TRESP:

{
register struct atp_trans *trp;
register int seqno;
/*
* we just got a response, find the trans record
*/

for (trp = atp->atp_trans wait.head; trp; trp = trp-
>tr_list_next) {
if (trp—>tr_tid == UAS_VALUE_NTOH(athp->tid))

break;
}
segno = athp->bitmap;
/*
* If we have already received it, ignore it
*/
if (1(trp—>tr_bitmap&atp mask[seqgno]) || trp-

>tr_rcv[seqno]) { -.. } <-- out of bound read access

if (athp->eom)
trp->tr_bitmap &= atp_ lomask[seqno]; € out of
bound read access
else
trp—>tr_bitmap &= ~atp _mask[segno]; €& out of
bound read access

trp->tr_rcv[segno] = m; €& out of bound write access !

return;

}

The unsigned character seqno is taken out of the atp header and used as an index into
several arrays without being validated. As it turns out, atp_mask[] and tr_rcv[] can hold
only up to eight elements while atp_lomask[] can hold up to nine elements, as shown in
the following example, atp.h:

atp.h

unsigned char atp mask [] = {
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,

¥

http://www.ioactive.com Page 3

0707070707007/

IOActive

COMPREHENSIVE COMPUTER SECURITY SERVICES

unsigned char atp lomask [] = {
0x00, 0Ox01, 0x03, 0xO07,
Ox0f, Ox1f, Ox3F, Ox7f,

OxTf
};
struct atp_trans {
struct atp_trans_q tr_list;
struct atp_state *tr_queue;
*/
gbuf_t *tr_xmt;
sent */
gbuf_t *tr_rcv[8];
rcvd */
};

Remediation

trans list */
data structure

message being

message being

This vulnerability was fixed in Mac OS X 10.5.8 and resolved in Apple Security Update
2009-003. If you're using Mac OS X version 10.5.8 or earlier, it is recommended that you

upgrade it.

http://www.ioactive.com

Page 4

