

http://www.ioactive.com Page 1

IOActive Security Advisory

Title Heap corruption in Tor when escaping input for logging

Severity Critical (for the affected platforms)

Date Discovered January 2009

Date Reported January 20, 2009

Date Disclosed June 8, 2009

Author Ilja van Sprundel

Affected Products
Tor 0.2.0.32 and 0.2.1.10-alpha were verified; however, earlier versions are also likely to be
vulnerable.

Description
There is a potential heap corruption bug in Tor when escaping data for logging purposes.
Due to the nature of this bug, only certain deployments of Tor are vulnerable and the bug
can only be triggered from certain locales.

Technical Details
Src/common/util.c
/** Allocate and return a new string representing the contents of
 * s,
 * surrounded by quotes and using standard C escapes.
 *
 * Generally, we use this for logging values that come in over
 * the network to
 * keep them from tricking users, and for sending certain values
 * to the
 * controller.
 *
 * We trust values from the resolver, OS, configuration file, and
 * command line
 * to not be maliciously ill-formed. We validate incoming
 * routerdescs and
 * SOCKS requests and addresses from BEGIN cells as they're
 * parsed;
 * afterwards, we trust them as non-malicious.
 */
char *
esc_for_log(const char *s)
{
 const char *cp;
 char *result, *outp;
 size_t len = 3;

http://www.ioactive.com Page 2

 if (!s) {
 return tor_strdup("");
 }

 for (cp = s; *cp; ++cp) {
 switch (*cp) {
 case '\\':
 case '\"':
 case '\'':
 len += 2;
 break;
 default:
 if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127)
 ++len;
 else
 len += 4;
 break;
 }
 }

 result = outp = tor_malloc(len);
 *outp++ = '\"';
 for (cp = s; *cp; ++cp) {
 switch (*cp) {
 case '\\':
 case '\"':
 case '\'':
 *outp++ = '\\';
 *outp++ = *cp;
 break;
 case '\n':
 *outp++ = '\\';
 *outp++ = 'n';
 break;
 case '\t':
 *outp++ = '\\';
 *outp++ = 't';
 break;
 case '\r':
 *outp++ = '\\';
 *outp++ = 'r';
 break;
 default:
 if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127) {
 *outp++ = *cp;
 } else {
 tor_snprintf(outp, 5, "\\%03o", (int)(uint8_t) *cp);
 outp += 4;
 }
 break;
 }
 }

 *outp++ = '\"';
 *outp++ = 0;

http://www.ioactive.com Page 3

 return result;
}
...
Src/common/compat.h
#define TOR_ISPRINT(c) isprint((int)(unsigned char)(c))

The function esc_for_log() is used to escape logging data that may potentially be tainted,
and it contains two loops, the first of which scans input string(s) and calculates how
many bytes are needed to escape a specific character. After the first loop, the calculated
number of bytes is allocated and the second loop reviews the string(s), escaping them if
necessary, and then copying them into the allocated buffer.

There are three cases in which a heap overflow can occur in the second loop: \r, \n, and
\t. This occurs because these cases are not explicitly handled in the first loop, so the code
falls to the default case, which looks like:

 default:
 if (TOR_ISPRINT(*cp) && ((uint8_t)*cp)<127)
 ++len;
 else
 len += 4;
 break;

The second loop assumes that the else case will always be true for \r, \n, and \t, which is
not, in fact, true. If TOR_ISPRINT—which is equivalent to isprint()—declares something
printable, heap corruption can occur. Contrary to popular belief, isprint() does not
contain a static table of printable characters and, instead, refers to the current locale, which
may believe that \r, \n, or \t are printable. Whether this occurs depends heavily on the
operating system and the specific locale. For example, most Windows locales (though not
C or POSIX) would identify \t as printable.

Remediation
Versions 0.2.0.33 and 0.2.1.11-alpha include a solution that involves not using the is*()
functions provided by the operating system; they implement a customized TOR_IS*()
function instead.

The full patch can be obtained from

<https://svn.torproject.org/cgi-bin/viewcvs.cgi?rev=18189&view=rev>

