

Confidential. Proprietary. [1]

IOActive Security Advisory

Title Multiple Vulnerabilities in Fwknop

Severity High

Discovered by Fernando Arnaboldi

CVEs CVE-2012-4434, CVE-2012-4435, CVE-2012-4436

Introduction
Fwknop stands for the "FireWall KNock OPerator", and implements an authorization
scheme called Single Packet Authorization (SPA). This method of authorization is based
around a default-drop packet filter and libpcap. A server might appear to have no open
ports available, but it could still grant access to certain services if authorized fwknop
packets are received. This service is commonly used on exposed systems which need to
diminish the attack surface of their services.

Fwknop contains several vulnerabilities, of which the most critical could allow remote
authenticated attackers to take advantage of flaws to execute code and/or to produce
denials of service. In addition to that, certain local flaws could also be triggered to execute
code.

1) Remote Stack Overflow in acc_check_port_access

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1.

Impact
Denial of Service / Remote Code Execution

Severity
High

Technical Detai ls
There is a buffer overflow in the fwknop server when processing an authenticated request
to open up a port. This overflow occurs in the file server/access.c, when the function

Confidential. Proprietary. [2]

acc_check_port_access assigns the variable ‘buf’ with the contents of ‘start’ without
checking the length:

int acc_check_port_access(acc_stanza_t *acc, char *port_str)

{

 int res = 1;

 char buf[32];

 char *ndx, *start;

 acc_port_list_t *o_pl = acc->oport_list;

 acc_port_list_t *r_pl = acc->rport_list;

 acc_port_list_t *in_pl = NULL;

 start = port_str;

 for(ndx = start; *ndx; ndx++){

 if(*ndx == ',') {

 strlcpy(buf, start, (ndx-start)+1);

 add_port_list_ent(&in_pl, buf);

 start = ndx+1;}}

 strlcpy(buf, start, (ndx-start)+1);

 …

To exploit this issue a modified version of the fwknop client was used against a default
fwknop server running on a Linux version of Debian.

Remediation
Upgrading to Release 2.0.3 of fwknop removes this stack overflow vulnerability.

CVE
More information can be found about this vulnerability at the following CVE location:

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4435

2) Remote Stack Overflow in parse_proto_and_port

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1.

Confidential. Proprietary. [3]

Impact
Denial of Service / Remote Code Execution

Technical Details
There is a buffer overflow in the fwknop server when processing an authenticated request
to open up a port. This overflow occurs in the file server/access.c, when the size of the
variable 'pstr' is not checked before assigning the value into 'proto_str' for the function
parse_proto_and_port:

static int parse_proto_and_port(char *pstr, int *proto, int
*port)

{

 char *ndx;

 char proto_str[32];

 if((ndx = strchr(pstr, '/')) == NULL) {

 log_msg(LOG_ERR,"Parse error on access port entry: %s",
pstr);

 return(-1);}

 strlcpy(proto_str, pstr, (ndx - pstr)+1);

 …

To exploit this issue a modified version of the fwknop client was used against a default
fwknop server running on a Linux version of Debian.

Remediation
Upgrading to Release 2.0.3 of fwknop removes this stack overflow vulnerability.

CVE
More information can be found about this vulnerability at the following CVE location:

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4435

3) Local Stack Overflow in run_last_args

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1.

Confidential. Proprietary. [4]

Impact
Potential Code Execution

Technical Details
There is a buffer overflow in fwknop when using the parameter --last-cmd using a history
file with malicious content. This overflow occurs in the file client/access.c, in the function
run_last_args() which contains a loop that reads all the previous parameters stored in
the history file .fwknop.run. If the contents of that file contains more than 200 parameters,
there will be buffer overflow in the argv_new[] array when trying to assign the value 210.

static void

run_last_args(fko_cli_options_t *options)

{

 FILE *args_file_ptr = NULL;

 int current_arg_ctr = 0;

 int argc_new = 0;

 int i = 0;

 char args_save_file[MAX_PATH_LEN] = {0};

 char args_str[MAX_LINE_LEN] = {0};

 char arg_tmp[MAX_LINE_LEN] = {0};

 char *argv_new[200]; /* should be way more than
enough */

#ifdef WIN32

 /* Not sure what the right thing is here on Win32, just
return

 * for now.

 */

 return;

#endif

 if (get_save_file(args_save_file))

 {

 if ((args_file_ptr = fopen(args_save_file, "r")) == NULL)

 {

 fprintf(stderr, "Could not open args file: %s\n",

 args_save_file);

 exit(EXIT_FAILURE);

 }

Confidential. Proprietary. [5]

 if ((fgets(args_str, MAX_LINE_LEN, args_file_ptr)) !=
NULL)

 {

 args_str[MAX_LINE_LEN-1] = '\0';

 if (options->verbose)

 printf("Executing: %s\n", args_str);

 for (i=0; i < (int)strlen(args_str); i++)

 {

 if (!isspace(args_str[i]))

 {

 arg_tmp[current_arg_ctr] = args_str[i];

 current_arg_ctr++;

 }

 else

 {

 arg_tmp[current_arg_ctr] = '\0';

 argv_new[argc_new] =
malloc(strlen(arg_tmp)+1);

 if (argv_new[argc_new] == NULL)

 {

 fprintf(stderr, "malloc failure for cmd
line arg.\n");

 exit(EXIT_FAILURE);

 }

 strlcpy(argv_new[argc_new], arg_tmp,
strlen(arg_tmp)+1);

 current_arg_ctr = 0;

 argc_new++;

 }

 }

 }

 …

To exploit this issue a modified version of the fwknop client was used against a default
fwknop server running on a Linux version of Debian.

Remediation
Upgrading to Release 2.0.3 of fwknop removes this stack overflow vulnerability.

CVE
More information can be found about this vulnerability at the following CVE location:

• http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4436

Confidential. Proprietary. [6]

4) Local Stack Overflows when Reading access.conf

Affected Products
The following versions of fwknop: 2.0.2 (other versions were not checked).

Impact
Potential Code Execution

Technical Details
When the fwknop server reads the access.conf file, there are no controls when using long
parameters on SOURCE, OPEN_PORTS and RESTRICT_PORTS, and it's possible to crash the
server and cause different buffer overflows.

Remediation
Upgrading to Release 2.0.3 of fwknop removes this stack overflow vulnerability.

5) Fwknop Global Configuration Readable

Affected Products
The following versions of fwknop: 2.0.2 (partially affected), 2.0.1, 2.0.0,
2.0.0-rc5, 2.0.0-rc4, 2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1

Impact
Passwords confidentiality might be compromised.

Technical Details
The file access.conf stores plain text passwords used by the fwknop server. When the
source tar archives are uncompressed, the default permissions of server/access.conf
are set to 664 for versions 2.0.2, 2.0.1, 2.0.0-rc3 and 2.0.0-rc2; permissions are
set to 644 for versions 2.0.0, 2.0.0-rc5, 2.0.0-rc4 and 2.0.0-rc1. This means that
any user with access to the server/ directory will be able to access this information.

Afterwards, when the fwknop server is installed using make install, the file access.conf
is moved to /usr/local/etc/fwknop. The permissions are set to 644 in versions 2.0.1,
2.0.0, 2.0.0-rc5, 2.0.0-rc4, 2.0.0-rc3, 2.0.0-rc2 and 2.0.0-rc1 which means
that read access is still possible after installation. Version 2.0.2 uses permissions 600,
which do not allow read access to everyone.

Confidential. Proprietary. [7]

Remediation
Upgrading to Release 2.0.3 of fwknop removes this vulnerability.

6) Fwknop Configuration File Permissions are Set to the
User's Umask Value

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1

Impact
An attacker might be able to modify the contents of the configuration file.

Technical Details
The fwknop client stores its configuration in ~/.fwknoprc when being executed for the first
time. The conventional policy is to make configuration files only writable for the owner (i.e.,
~/.bashrc). However the permissions for ~/.fwknoprc are set using the umask value of
the logged user. Since the creation of this file relies on the umask value, this file might be
created with world writable permissions. If this happens, an attacker would be able to
modify the contents of this file and alter the configuration parameters.

This behavior was observed in client/config_init.c:

static int

create_fwknoprc(const char *rcfile)

{

 FILE *rc;

 fprintf(stderr, "Creating initial rc file: %s.\n", rcfile);

 if ((rc = fopen(rcfile, "w")) == NULL)

 {

 fprintf(stderr, "Unable to create rc file: %s: %s\n",

 rcfile, strerror(errno));

 return(-1);

 }

 …

Remediation
Upgrading to Release 2.0.3 of fwknop removes this vulnerability.

Confidential. Proprietary. [8]

7) Fwknop History File Permissions are Set to the User's
Umask Value

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1

Impact
The last fwknop command might be read and modified by an attacker with local access to
the file ~/.fwknop.run. Since the file contents might be used with the fwknop parameter -
-last-cmd, the original user could inadvertently execute unexpected content that could
affect either the local host or a remote server. If this issue is used in conjuntion with the
vulnerability #3 exposed in this document, risk is even higher.

Technical Details
The fwknop client stores the last command executed in ~/.fwknop.run when using the
function save_args(). The conventional policy is to make history files only
readable/writable for the owner (i.e., ~/.bash_history). However, the permissions for
~/.fwknop.run are set using the umask value of the logged user. Since the creation of this
file relies on the umask value, this file might be created with world writable permissions. If
this happens and an attacker is able to modify the contents of this file, the real owner might
inadvertently execute dangerous content when using the parameter '--last-cmd'.

This behavior was observed in client/fwknop.c:

static void save_args(int argc, char **argv)

{

 char args_save_file[MAX_PATH_LEN];

 char args_str[MAX_LINE_LEN] = "";

 FILE *args_file_ptr = NULL;

 int i = 0, args_str_len = 0;

 …

 if (get_save_file(args_save_file)) {

 if ((args_file_ptr = fopen(args_save_file, "w")) == NULL)
{

 …

 }

 …

Confidential. Proprietary. [9]

Remediation
Upgrading to Release 2.0.3 of fwknop removes this vulnerability.

8) Fwknop Configuration File Ownership and Permissions
are not Verified

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1

Impact
A user could inadvertently use parameters that could affect the client execution.

Technical Details
The fwknop client regularly reads the configuration file ~/.fwknoprc. If an attacker is able
to create this file before the real user executes the program for the first time, an attacker
can later alter the default parameters used. If this happens, the real user might use
unwanted paremeters.

This behavior was observed in client/config_init.c:

/* Process (create if necessary) the users ~/.fwknoprc file.

*/

static void process_rc(fko_cli_options_t *options)

{

 FILE *rc;

 int line_num = 0;

 int rcf_offset;

 char line[MAX_LINE_LEN];

 char rcfile[MAX_PATH_LEN];

 char curr_stanza[MAX_LINE_LEN] = {0};

 char var[MAX_LINE_LEN] = {0};

 char val[MAX_LINE_LEN] = {0};

 char *ndx, *emark, *homedir;

#ifdef WIN32

 homedir = getenv("USERPROFILE");

#else

 homedir = getenv("HOME");

#endif

Confidential. Proprietary. [10]

 if(homedir == NULL)

 {

 fprintf(stderr, "Warning: Unable to determine HOME
directory.\n"

 " No .fwknoprc file processed.\n");

 return;

 }

 memset(rcfile, 0x0, MAX_PATH_LEN);

 strlcpy(rcfile, homedir, MAX_PATH_LEN);

 rcf_offset = strlen(rcfile);

 /* Sanity check the path to .fwknoprc.

 * The preceeding path plus the path separator and
'.fwknoprc' = 11

 * cannot exceed MAX_PATH_LEN.

 */

 if(rcf_offset > (MAX_PATH_LEN - 11))

 {

 fprintf(stderr, "Warning: Path to .fwknoprc file is too
long.\n"

 " No .fwknoprc file processed.\n");

 return;

 }

 rcfile[rcf_offset] = PATH_SEP;

 strlcat(rcfile, ".fwknoprc", MAX_PATH_LEN);

 /* Open the rc file for reading, if it does not exist, then
create

 * an initial .fwknoprc file with defaults and go on.

 */

 if ((rc = fopen(rcfile, "r")) == NULL)

…

Remediation
Upgrading to Release 2.0.3 of fwknop removes this vulnerability.

Confidential. Proprietary. [11]

9) Fwknop History File Ownership and Permissions are not
Verified

Affected Products
The following versions of fwknop: 2.0.2, 2.0.1, 2.0.0, 2.0.0-rc5, 2.0.0-rc4,
2.0.0-rc3, 2.0.0-rc2, 2.0.0-rc1

Impact
A user could inadvertently execute unexpected content that could affect either the local
host or a remote server.

Technical Details
The fwknop client stores the last command executed in ~/.fwknop.run. If an attacker is
able to create this file before the real user executes the program, the attacker can later alter
the contents of this file. If this happens, the real user might inadvertently execute dangerous
content when using the parameter --last-cmd. If this issue is used in conjunction with
issue #3, the risk is even higher.

This behavior was observed in client/fwknop.c:

static void save_args(int argc, char **argv)

{

 char args_save_file[MAX_PATH_LEN];

 char args_str[MAX_LINE_LEN] = "";

 FILE *args_file_ptr = NULL;

 int i = 0, args_str_len = 0;

 …

 if (get_save_file(args_save_file)) {

 if ((args_file_ptr = fopen(args_save_file, "w")) == NULL)
{

 …

 }

 …

Remediation
Upgrading to Release 2.0.3 of fwknop removes this vulnerability.

